(1)如圖1,P是半徑為5的⊙O上一點,直線l與⊙O交于A、B兩點,AB=8,則△ABP面積的最大值為 3232.
問題探究:
(2)如圖2,在等腰△ABC中,BA=BC,∠ABC=45°,F(xiàn)是高AD和高BE的交點.
①請求出△ABF與△BDF的面積之比;
②若BD=4,求△ABF的面積.
問題解決:
(3)如圖3,四邊形ABCD是某區(qū)的一處景觀示意圖,AD∥BC,∠ABC=60°,∠BCD=90°,AB=60m,BC=80m,M是AB上一點,且AM=20m.按設(shè)計師要求,需在四邊形區(qū)域內(nèi)確定一個點N,修建花壇△AMN和草坪△BCN,且需DN=25m.已知花壇的造價是每平米200元,草坪的造價是每平米100元,請幫設(shè)計師算算修好花壇和草坪預(yù)算最少需要多少元?
【考點】圓的綜合題.
【答案】32
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:138引用:4難度:0.1
相似題
-
1.如圖,AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點C,AD⊥EF于點D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)求證:AC2=AD?AB;
(3)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.發(fā)布:2024/12/23 9:0:2組卷:1811引用:34難度:0.7 -
2.如圖,矩形ABCD中,AB=13,AD=6.點E是CD上的動點,以AE為直徑的⊙O與AB交于點F,過點F作FG⊥BE于點G.
(1)當E是CD的中點時:tan∠EAB的值為;
(2)在(1)的條件下,證明:FG是⊙O的切線;
(3)試探究:BE能否與⊙O相切?若能,求出此時BE的長;若不能,請說明理由.發(fā)布:2024/12/23 12:0:2組卷:654引用:5難度:0.4 -
3.在平面直角坐標系xOy中,⊙O的半徑為1,P是坐標系內(nèi)任意一點,點P到⊙O的距離SP的定義如下:若點P與圓心O重合,則SP為⊙O的半徑長;若點P與圓心O不重合,作射線OP交⊙O于點A,則SP為線段AP的長度.
圖1為點P在⊙O外的情形示意圖.
(1)若點B(1,0),C(1,1),,則SB=D(0,13)
(2)若直線y=x+b上存在點M,使得SM=2,求b的取值范圍;
(3)已知點P,Q在x軸上,R為線段PQ上任意一點.若線段PQ上存在一點T,滿足T在⊙O內(nèi)且ST≥SR,直接寫出滿足條件的線段PQ長度的最大值.發(fā)布:2024/12/23 11:0:1組卷:618引用:11難度:0.1
把好題分享給你的好友吧~~