轉(zhuǎn)化是解決數(shù)學(xué)問題常用的思想方法之一,它可以在數(shù)與數(shù)、數(shù)與形、形與形之間靈活應(yīng)用.如圖1,已知在Rt△ABC中,∠ABC=90°,BC=8,AB=6.請(qǐng)解答下面的問題:
觀察猜想:(1)如圖1,將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°得到△NMC,連接BM,則△BCM的形狀是 等邊三角形等邊三角形;
探究證明:(2)如圖2,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),將△CDE繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°得到△CMN,連接MB,AN.
①求證:△ACN∽△BCM;
②求AN的長.
【答案】等邊三角形
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/2 7:0:2組卷:175引用:2難度:0.5
相似題
-
1.如圖,梯形ABCD中AD∥BC,對(duì)角線AC、BD交于0點(diǎn),△AOD與△DOC的面積之比為3:7,則AD:BC=
發(fā)布:2025/1/28 8:0:2組卷:39引用:1難度:0.7 -
2.如圖,在梯形ABCD中,AB∥CD,對(duì)角線AC、BD相交于點(diǎn)O,如果S△AOB=2S△AOD,AC=10,那么OC的長是.
發(fā)布:2025/1/28 8:0:2組卷:107引用:1難度:0.4 -
3.如圖,AB是圓O的直徑,C是半徑OB的中點(diǎn),D是OB延長線上一點(diǎn),且BD=OB,直線MD與圓O相交于點(diǎn)M、T(不與A、B重合),DN與圓O相切于點(diǎn)N,連接MC,MB,OT.
(Ⅰ)求證:DT?DM=DO?DC;
(Ⅱ)若∠DOT=60°,試求∠BMC的大?。?/h2>發(fā)布:2025/1/28 8:0:2組卷:363引用:1難度:0.3