已知:△ABC是等邊三角形,經過點A作直線MN∥BC,動點D在直線MN上(不與點A重合),以點D為頂點作∠BDE=60°,DE與邊AC所在直線交于點E,連接BE.
(1)如圖1,當點E在邊AC上時,探究發(fā)現(xiàn):△BDE是等邊三角形;要證明這個結論,經過思考分析,給出如下兩種思路:
思路一:在邊AB上截取AP=AD,連接DP,通過證明△PDB≌△ADE使問題得以解決;
思路二:過點D作DP∥AC交邊AB于點P,同理通過證明△PDB≌△ADE使問題得以解決.
請你選擇上述一種思路,給出完整的證明過程.
(2)如圖2,當點E在AC的延長線上時,請判斷△BDE的形狀,并證明你的結論.
?
【考點】三角形綜合題.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/10/4 15:0:6組卷:37引用:1難度:0.5
相似題
-
1.已知直角△ABC,∠BAC=90°,D是斜邊BC的中點,E、F分別是AB、AC邊上的點,且DE⊥DF,連接EF.
(1)如圖1,求證:∠BED=∠AFD;
(2)如圖1,求證:BE2+CF2=EF2;
(3)如圖2,當∠ABC=45°,若BE=4,CF=3,求△DEF的面積.發(fā)布:2024/12/23 14:0:1組卷:182引用:3難度:0.2 -
2.已知A(0,4),B(-4,0),D(9,4),C(12,0),動點P從點A出發(fā),在線段AD上,以每秒1個單位的速度向點D運動:動點Q從點C出發(fā),在線段BC上,以每秒2個單位的速度向點B運動,點P、Q同時出發(fā),當其中一個點到達終點時,另一個點隨之停止運動,設運動時間為t(秒).
(1)當t=秒時,PQ平分線段BD;
(2)當t=秒時,PQ⊥x軸;
(3)當時,求t的值.∠PQC=12∠D發(fā)布:2024/12/23 15:0:1組卷:142引用:3難度:0.1 -
3.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點F在BC上,點A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點F順時針旋轉(當點D落在射線FB上時停止旋轉).
(1)當∠AFD=°時,DF∥AC;當∠AFD=°時,DF⊥AB;
(2)在旋轉過程中,DF與AB的交點記為P,如圖2,若△AFP有兩個內角相等,求∠APD的度數(shù);
(3)當邊DE與邊AB、BC分別交于點M、N時,如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說明理由.發(fā)布:2024/12/23 18:30:1組卷:1690引用:10難度:0.1
把好題分享給你的好友吧~~