如圖所示的幾何體中,平面PAD⊥平面ABCD,△PAD為等腰直角三角形,∠APD=90°,四邊形ABCD為直角梯形,AB∥DC,AB⊥AD,AB=AD=2,PQ∥DC,PQ=DC=1.
(1)求證:PD∥平面QBC;
(2)線段QB上是否存在點M滿足QM=λQB(0≤λ≤1),使得AM⊥平面QBC?若存在,求出λ的值;若不存在,說明理由.
QM
=
λ
QB
(
0
≤
λ
≤
1
)
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/16 8:0:10組卷:67引用:4難度:0.5
相似題
-
1.如圖,一簡單組合體的一個面ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,且DC⊥平面ABC.
(1)證明:BC⊥平面ACD;
(2)若AB=2,BC=1,tan∠EAB=,試求該簡單組合體的體積V.32發(fā)布:2025/1/20 8:0:1組卷:25引用:1難度:0.5 -
2.如圖,AB是圓O的直徑,PA垂直于圓O所在的平面,C是圓O上異于A,B的點,
(1)求證:BC⊥平面PAC;
(2)設(shè)Q,M分別為PA,AC的中點,問:對于線段OM上的任一點G,是否都有QG∥平面PBC?并說明理由.發(fā)布:2025/1/28 8:0:2組卷:33引用:2難度:0.3 -
3.如圖,AB是圓O的直徑,PA垂直于圓O所在的平面,C是圓周上不同于A、B的任意一點.
(1)求證:BC⊥平面PAC;
(2)求證:平面PAC⊥平面PBC.發(fā)布:2025/1/28 8:0:2組卷:120引用:3難度:0.3