如果曲線y=f(x)存在相互垂直的兩條切線,稱函數(shù)y=f(x)是“正交函數(shù)”.已知f(x)=x2+ax+2lnx,設(shè)曲線y=f(x)在點M(x0,f(x0))處的切線為l1.
(1)當(dāng)f'(1)=0時,求實數(shù)a的值;
(2)當(dāng)a=-8,x0=8時,是否存在直線l2滿足l1⊥l2,且l2與曲線y=f(x)相切?請說明理由;
(3)當(dāng)a≥-5時,如果函數(shù)y=f(x)是“正交函數(shù)”,求滿足要求的實數(shù)a的集合D;若對任意a∈D,曲線y=f(x)都不存在與l1垂直的切線l2,求x0的取值范圍.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:305引用:4難度:0.3
相關(guān)試卷