已知a+b+c=3,且a,b,c都是正數(shù).
(1)求證:1a+b+1b+c+1c+a≥32;
(2)是否存在實數(shù)m,使得關于x的不等式-x2+mx+2≤a2+b2+c2對所有滿足題設條件的正實數(shù)a,b,c恒成立?如果存在,求出m的取值范圍,如果不存在,請說明理由.
1
a
+
b
1
b
+
c
+
1
c
+
a
≥
3
2
【考點】不等式的證明.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:46引用:5難度:0.6
相似題
-
1.已知關于x的不等式|x+1|-|x-2|≥|t-1|+t有解.
(1)求實數(shù)t的取值范圍;
(2)若a,b,c均為正數(shù),m為t的最大值,且2a+b+c=m.求證:.a2+b2+c2≥23發(fā)布:2024/12/29 8:0:12組卷:64引用:9難度:0.5 -
2.已知函數(shù)f(x)滿足2axf(x)=2f(x)-1,f(1)=1,設無窮數(shù)列{an}滿足an+1=f(an).
(1)求函數(shù)f(x)的表達式;
(2)若a1=3,從第幾項起,數(shù)列{an}中的項滿足an<an+1;
(3)若1+<a1<1m(m為常數(shù)且m∈N,m≠1),求最小自然數(shù)N,使得當n≥N時,總有0<an<1成立.mm-1發(fā)布:2025/1/14 8:0:1組卷:62引用:2難度:0.5 -
3.我們知道,
,當且僅當a=b時等號成立.即a,b的算術平均數(shù)的平方不大于a,b平方的算術平均數(shù).此結論可以推廣到三元,即(a+b2)2≤a2+b22,當且僅當a=b=c時等號成立.(a+b+c3)2≤a2+b2+c23
(1)證明:,當且僅當a=b=c時等號成立.(a+b+c3)2≤a2+b2+c23
(2)已知x>0,y>0,z>0,若不等式恒成立,利用(1)中的不等式,求實數(shù)t的最小值.x+y+z≤tx+y+z發(fā)布:2024/10/12 1:0:1組卷:15引用:2難度:0.4
把好題分享給你的好友吧~~