如圖,直線y=kx+b(k,b為常數(shù))分別與x軸、y軸交于點C(-3,0),D(0,3),拋物線y=-23x2+43x+2與x軸交于點A和點B(點A在點B的左側(cè)).
(1)求直線y=kx+b的表達式;
(2)求點A和點B的坐標(biāo);
(3)若直線l與x軸垂直,在點A與點B之間移動,且與直線y=kx+b(k,b為常數(shù))交于點E,與拋物線y=-23x2+43x+2交于點F,求EF的最小值.
2
3
4
3
2
3
4
3
【考點】拋物線與x軸的交點;二次函數(shù)的最值;二次函數(shù)圖象上點的坐標(biāo)特征;待定系數(shù)法求一次函數(shù)解析式;一次函數(shù)圖象上點的坐標(biāo)特征;一次函數(shù)的性質(zhì).
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:137引用:2難度:0.5
相似題
-
1.二次函數(shù)y=ax2+bx+c的值恒為正,則a,b,c應(yīng)滿足( ?。?/h2>
發(fā)布:2024/12/23 14:30:1組卷:157引用:5難度:0.9 -
2.已知:二次函數(shù)y=-x2+x+6,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新函數(shù),當(dāng)直線y=m與新圖象有2個交點時,m的取值范圍是( ?。?/h2>
發(fā)布:2024/12/23 12:0:2組卷:434引用:2難度:0.5 -
3.函數(shù)y=kx2-4x+4的圖象與x軸有交點,則k的取值范圍是( ?。?/h2>
發(fā)布:2025/1/2 5:0:3組卷:375引用:2難度:0.7
把好題分享給你的好友吧~~