定義:在平面直角坐標系xOy中,若P、Q的坐標分別為(x1,y1)、Q(x2,y2),則稱|x1-x2|+|y1-y2|為若P、Q的“絕對距離”,表示為dPQ.
【概念理解】
(1)一次函數(shù)y=-2x+6圖象與x軸、y軸分別交于A、B點.
①dAB為 99;
②點N為一次函數(shù)y=-2x+6圖象在第一象限內(nèi)的一點,dAN=5,求N的坐標;
③一次函數(shù)y=x+32的圖象與y軸、AB分別交于C、D點,P為線段CD上的任意一點,試說明:dAP=dBP.【問題解決】
(2)點P(1,2)、Q(a,b)為二次函數(shù)y=x2-mx+n圖象上的點,且Q在P的右邊.當b=2時,dPQ=4.若b<2,求dPQ的最大值.
3
2
【考點】二次函數(shù)綜合題.
【答案】9
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/29 8:0:10組卷:59引用:1難度:0.1
相似題
-
1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個交點是A(4,0),B(1,0),與y軸的交點是C.
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點D,使得△DCA的面積最大?若存在,求出點D的坐標及△DCA面積的最大值;若不存在,請說明理由;
(3)設拋物線的頂點是F,對稱軸與AC的交點是N,P是在AC上方的該拋物線上一動點,過P作PM⊥x軸,交AC于M.若P點的橫坐標是m.問:
①m取何值時,過點P、M、N、F的平面圖形不是梯形?
②四邊形PMNF是否有可能是等腰梯形?若有可能,請求出此時m的值;若不可能,請說明理由.發(fā)布:2025/1/2 8:0:1組卷:82引用:1難度:0.5 -
2.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為.
發(fā)布:2024/12/23 17:30:9組卷:3647引用:37難度:0.4 -
3.如圖,將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C在x軸上,點D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內(nèi),設點B的對應點為點E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點落在△ADE的內(nèi)部,則a的取值范圍是( ?。?/h2>5發(fā)布:2024/12/26 1:30:3組卷:2665引用:7難度:0.7
相關(guān)試卷