試卷征集
加入會(huì)員
操作視頻

已知橢圓W:
x
2
4
m
+
y
2
m
=
1
的長(zhǎng)軸長(zhǎng)為4,左、右頂點(diǎn)分別為A,B,經(jīng)過(guò)點(diǎn)P(n,0)的直線與橢圓W相交于不同的兩點(diǎn)C,D(不與點(diǎn)A,B重合).
(Ⅰ)當(dāng)n=0,且直線CD⊥x軸時(shí),求四邊形ACBD的面積;
(Ⅱ)設(shè)n=1,直線CB與直線x=4相交于點(diǎn)M,求證:A,D,M三點(diǎn)共線.

【考點(diǎn)】直線與橢圓的綜合
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:305引用:4難度:0.5
相似題
  • 1.設(shè)橢圓
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)的右頂點(diǎn)為A,上頂點(diǎn)為B.已知橢圓的離心率為
    5
    3
    ,|AB|=
    13

    (Ⅰ)求橢圓的方程;
    (Ⅱ)設(shè)直線l:y=kx(k<0)與橢圓交于P,Q兩點(diǎn),直線l與直線AB交于點(diǎn)M,且點(diǎn)P,M均在第四象限.若△BPM的面積是△BPQ面積的2倍,求k的值.

    發(fā)布:2024/12/29 12:30:1組卷:4431引用:26難度:0.3
  • 2.已知橢圓C:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)的一個(gè)頂點(diǎn)坐標(biāo)為A(0,-1),離心率為
    3
    2

    (Ⅰ)求橢圓C的方程;
    (Ⅱ)若直線y=k(x-1)(k≠0)與橢圓C交于不同的兩點(diǎn)P,Q,線段PQ的中點(diǎn)為M,點(diǎn)B(1,0),求證:點(diǎn)M不在以AB為直徑的圓上.

    發(fā)布:2024/12/29 12:30:1組卷:362引用:4難度:0.5
  • 3.如果橢圓
    x
    2
    36
    +
    y
    2
    9
    =
    1
    的弦被點(diǎn)(4,2)平分,則這條弦所在的直線方程是(  )

    發(fā)布:2024/12/18 3:30:1組卷:455引用:3難度:0.6
小程序二維碼
把好題分享給你的好友吧~~
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱(chēng):菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正