【背景介紹】勾股定理是幾何學(xué)中的明珠,充滿著魅力.千百年來,人們對它的證明趨之若鶩,其中有著名的數(shù)學(xué)家,也有業(yè)余數(shù)學(xué)愛好者.向常春在1994年構(gòu)造發(fā)現(xiàn)了一個新的證法.
【小試牛刀】把兩個全等的直角三角形△ABC和△DAE如圖1放置,其三邊長分別為a,b,c.顯然,∠DAB=∠B=90°,AC⊥DE.請用a,b,c分別表示出梯形ABCD,四邊形AECD,△EBC的面積:
S梯形ABCD= 12a(a+b)12a(a+b);
S△EBC= 12b(a-b)12b(a-b);
S四邊形AECD= 12c212c2;
再探究這三個圖形面積之間的關(guān)系,它們滿足的關(guān)系式為 12a(a+b)=12b(a-b)+12c212a(a+b)=12b(a-b)+12c2,化簡后,可得到勾股定理.
【知識運(yùn)用】
如圖2,河道上A,B兩點(diǎn)(看作直線上的兩點(diǎn))相距200米,C,D為兩個菜園(看作兩個點(diǎn)),AD⊥AB,BC⊥AB,垂足分別為A,B,AD=80米,BC=70米,現(xiàn)在菜農(nóng)要在AB上確定一個抽水點(diǎn)P,使得抽水點(diǎn)P到兩個菜園C,D的距離和最短,則該最短距離為 250250米.
【知識遷移】
借助上面的思考過程,請直接寫出當(dāng)0<x<15時,代數(shù)式x2+9+(15-x)2+25的最小值= 1717.
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
x
2
+
9
+
(
15
-
x
)
2
+
25
【考點(diǎn)】四邊形綜合題.
【答案】a(a+b);b(a-b);c2;a(a+b)=b(a-b)+c2;250;17
1
2
1
2
1
2
1
2
1
2
1
2
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/15 1:0:1組卷:499引用:6難度:0.1
相似題
-
1.如圖,在菱形ABCD中,∠ABC=60°,AB=2.過點(diǎn)A作對角線BD的平行線與邊CD的延長線相交于點(diǎn)E.P為邊BD上的一個動點(diǎn)(不與端點(diǎn)B,D重合),連接PA,PE,AC.
(1)求證:四邊形ABDE是平行四邊形;
(2)求四邊形ABDE的周長和面積;
(3)記△ABP的周長和面積分別為C1和S1,△PDE的周長和面積分別為C2和S2,在點(diǎn)P的運(yùn)動過程中,試探究下列兩個式子的值或范圍:①C1+C2,②S1+S2,如果是定值的,請直接寫出這個定值;如果不是定值的,請直接寫出它的取值范圍.發(fā)布:2025/1/28 8:0:2組卷:574引用:1難度:0.2 -
2.如圖,菱形ABCD中,AB=5,連接BD,sin∠ABD=
,點(diǎn)P是射線BC上一點(diǎn)(不與點(diǎn)B重合),AP與對角線BD交于點(diǎn)E,連接EC.55
(1)求證:AE=CE;
(2)當(dāng)點(diǎn)P在線段BC上時,設(shè)BP=n(0<n<5),求△PEC的面積;(用含n的代數(shù)式表示)
(3)當(dāng)點(diǎn)P在線段BC的延長線上時,若△PEC是直角三角形,請直接寫出BP的長.發(fā)布:2025/1/28 8:0:2組卷:254引用:1難度:0.1 -
3.如圖,在菱形ABCD中,AB=10,sinB=
,點(diǎn)E從點(diǎn)B出發(fā)沿折線B-C-D向終點(diǎn)D運(yùn)動.過點(diǎn)E作點(diǎn)E所在的邊(BC或CD)的垂線,交菱形其它的邊于點(diǎn)F,在EF的右側(cè)作矩形EFGH.35
(1)如圖1,點(diǎn)G在AC上.求證:FA=FG.
(2)若EF=FG,當(dāng)EF過AC中點(diǎn)時,求AG的長.
(3)已知FG=8,設(shè)點(diǎn)E的運(yùn)動路程為s.當(dāng)s滿足什么條件時,以G,C,H為頂點(diǎn)的三角形與△BEF相似(包括全等)?發(fā)布:2025/1/28 8:0:2組卷:1985引用:3難度:0.1