在直角坐標(biāo)系xOy中,曲線(xiàn)C的參數(shù)方程為x=1+sinα+3cosα, y=2+cosα-3sinα,
(α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立的極坐標(biāo)系中,直線(xiàn)l的方程是ρcos(θ+π3)=12.
(1)求曲線(xiàn)C的普通方程和直線(xiàn)l的直角坐標(biāo)方程;
(2)若點(diǎn)A的坐標(biāo)為(1,0),直線(xiàn)l與曲線(xiàn)C交于P,Q兩點(diǎn),求1|AP|+1|AQ|的值.
x = 1 + sinα + 3 cosα , |
y = 2 + cosα - 3 sinα , |
ρcos
(
θ
+
π
3
)
=
1
2
1
|
AP
|
+
1
|
AQ
|
【考點(diǎn)】參數(shù)方程化成普通方程.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:74引用:4難度:0.7
相似題
-
1.在平面直角坐標(biāo)系xOy中,已知曲線(xiàn)C1:
(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2:ρ=2acosθ(a>0).x=t,y=2t2-t+32
(1)求曲線(xiàn)C1的極坐標(biāo)方程和曲線(xiàn)C2的直角坐標(biāo)方程;
(2)設(shè)射線(xiàn)與C1相交于A(yíng),B兩點(diǎn),與C2相交于M點(diǎn)(異于O),若|OM|=|AB|,求a.θ=π3(ρ≥0)發(fā)布:2024/12/29 6:30:1組卷:153引用:8難度:0.7 -
2.直線(xiàn)l:
(t為參數(shù),a≠0),圓C:x=a-2t,y=-1+t(極軸與x軸的非負(fù)半軸重合,且單位長(zhǎng)度相同).ρ=22cos(θ+π4)
(1)求圓心C到直線(xiàn)l的距離;
(2)若直線(xiàn)l被圓C截得的弦長(zhǎng)為,求a的值.655發(fā)布:2024/12/29 10:0:1組卷:56引用:6難度:0.5 -
3.已知三個(gè)方程:①
②x=ty=t2③x=tanty=tan2t(都是以t為參數(shù)).那么表示同一曲線(xiàn)的方程是( ?。?/h2>x=sinty=sin2t發(fā)布:2025/1/7 22:30:4組卷:105引用:2難度:0.7