【理解概念】
定義:如果三角形有兩個內(nèi)角的差為90°,那么這樣的三角形叫做“準直角三角形”.
(1)已知△ABC是“準直角三角形”,且∠C>90°.
①若∠A=60°,則∠B=1515°;
②若∠A=40°,則∠B=10或2510或25°;
【鞏固新知】
(2)如圖①,在Rt△ABC中,∠ACB=90°,AB=6,BC=2,點D在AC邊上,若△ABD是“準直角三角形”,求CD的長;
【解決問題】
(3)如圖②,在四邊形ABCD中,CD=CB,∠ABD=∠BCD,AB=5,BD=8,且△ABC是“準直角三角形”,求△BCD的面積.
【考點】四邊形綜合題.
【答案】15;10或25
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/11 10:0:8組卷:914引用:5難度:0.1
相似題
-
1.如圖,在菱形ABCD中,∠ABC=60°,AB=2.過點A作對角線BD的平行線與邊CD的延長線相交于點E.P為邊BD上的一個動點(不與端點B,D重合),連接PA,PE,AC.
(1)求證:四邊形ABDE是平行四邊形;
(2)求四邊形ABDE的周長和面積;
(3)記△ABP的周長和面積分別為C1和S1,△PDE的周長和面積分別為C2和S2,在點P的運動過程中,試探究下列兩個式子的值或范圍:①C1+C2,②S1+S2,如果是定值的,請直接寫出這個定值;如果不是定值的,請直接寫出它的取值范圍.發(fā)布:2025/1/28 8:0:2組卷:574引用:1難度:0.2 -
2.如圖,在菱形ABCD中,AB=10,sinB=
,點E從點B出發(fā)沿折線B-C-D向終點D運動.過點E作點E所在的邊(BC或CD)的垂線,交菱形其它的邊于點F,在EF的右側(cè)作矩形EFGH.35
(1)如圖1,點G在AC上.求證:FA=FG.
(2)若EF=FG,當EF過AC中點時,求AG的長.
(3)已知FG=8,設點E的運動路程為s.當s滿足什么條件時,以G,C,H為頂點的三角形與△BEF相似(包括全等)?發(fā)布:2025/1/28 8:0:2組卷:1986引用:3難度:0.1 -
3.如圖,菱形ABCD中,AB=5,連接BD,sin∠ABD=
,點P是射線BC上一點(不與點B重合),AP與對角線BD交于點E,連接EC.55
(1)求證:AE=CE;
(2)當點P在線段BC上時,設BP=n(0<n<5),求△PEC的面積;(用含n的代數(shù)式表示)
(3)當點P在線段BC的延長線上時,若△PEC是直角三角形,請直接寫出BP的長.發(fā)布:2025/1/28 8:0:2組卷:254引用:1難度:0.1