已知等軸雙曲線x2a2-y2b2=1(a>0,b>0)的右焦點為F(4,0),過右焦點F作斜率為正的直線l,直線l交雙曲線的右支于P,Q兩點,分別交兩條漸近線于M,N兩點,點M,P在第一象限,O是原點.
(1)求直線l斜率的取值范圍;
(2)設△OMP,△ONP,△OPQ的面積分別為S1,S2,S3,求S3S1?S2的取值范圍.
x
2
a
2
-
y
2
b
2
=
1
(
a
>
0
,
b
>
0
)
S
3
S
1
?
S
2
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/6 8:0:9組卷:95引用:5難度:0.5
相似題
-
1.已知雙曲線C:
=1(a>0,b>0)的左頂點為A,過左焦點F的直線與C交于P,Q兩點.當PQ⊥x軸時,|PA|=x2a2-y2b2,△PAQ的面積為3.10
(1)求C的方程;
(2)證明:以PQ為直徑的圓經(jīng)過定點.發(fā)布:2024/12/18 0:0:1組卷:683引用:8難度:0.5 -
2.如圖,在平面直角坐標系xOy中,已知等軸雙曲線E:
(a>0,b>0)的左頂點A,過右焦點F且垂直于x軸的直線與E交于B,C兩點,若△ABC的面積為x2a2-y2b2=1.2+1
(1)求雙曲線E的方程;
(2)若直線l:y=kx-1與雙曲線E的左,右兩支分別交于M,N兩點,與雙曲線E的兩條漸近線分別交于P,Q兩點,求的取值范圍.|MN||PQ|發(fā)布:2024/10/31 12:30:1組卷:520引用:10難度:0.5 -
3.已知雙曲線
的左、右焦點分別為F1,F(xiàn)2,過F1的直線與C的兩條漸近線分別交于A,B兩點,若A為線段BF1的中點,且BF1⊥BF2,則C的離心率為( ?。?/h2>C:x2a2-y2b2=1(a>0,b>0)發(fā)布:2024/11/8 21:0:2組卷:435引用:8難度:0.5
把好題分享給你的好友吧~~