已知過拋物線y2=2px(p>0)的焦點,斜率為22的直線交拋物線于A(x1,y1),B(x2,y2)(x1<x2)兩點,且|AB|=9.
(1)求該拋物線的方程;
(2)O為坐標(biāo)原點,求△OAB的面積.
2
【考點】直線與拋物線的綜合;拋物線的焦點與準(zhǔn)線.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:49引用:4難度:0.6
相似題
-
1.拋物線x2=4y的焦點為F,準(zhǔn)線為l,A,B是拋物線上的兩個動點,且滿足AF⊥BF,P為線段AB的中點,設(shè)P在l上的射影為Q,則
的最大值是( ?。?/h2>|PQ||AB|發(fā)布:2024/12/29 5:30:3組卷:448引用:7難度:0.5 -
2.如圖,設(shè)拋物線y2=2px的焦點為F,過x軸上一定點D(2,0)作斜率為2的直線l與拋物線相交于A,B兩點,與y軸交于點C,記△BCF的面積為S1,△ACF的面積為S2,若
,則拋物線的標(biāo)準(zhǔn)方程為( )S1S2=14發(fā)布:2024/12/17 0:0:2組卷:160引用:6難度:0.6 -
3.如圖,已知點P是拋物線C:y2=4x上位于第一象限的點,點A(-2,0),點M,N是y軸上的兩個動點(點M位于x軸上方),滿足PM⊥PN,AM⊥AN,線段PN分別交x軸正半軸、拋物線C于點D,Q,射線MP交x軸正半軸于點E.
(Ⅰ)若四邊形ANPM為矩形,求點P的坐標(biāo);
(Ⅱ)記△DOP,△DEQ的面積分別為S1,S2,求S1?S2的最大值.發(fā)布:2024/12/29 1:0:8組卷:83引用:2難度:0.4