以橢圓C:x2a2+y2b2=1(a>b>0)的中心O為圓心,a2+b2為半徑的圓稱為該橢圓的“準圓”.設(shè)橢圓C的左頂點為P,左焦點為F,上頂點為Q,且滿足|PQ|=2,S△OPQ=62S△OFQ.
(1)求橢圓C及其“準圓”的方程;
(2)若橢圓C的“準圓”的一條弦ED(不與坐標(biāo)軸垂直)與橢圓C交于M,N兩點,當(dāng)OM?ON=0時,判斷弦ED的長是否為定值?若是,求出該定值;若不是,請說明理由.
x
2
a
2
y
2
b
2
a
2
+
b
2
6
2
OM
ON
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/21 8:0:9組卷:44引用:1難度:0.6
相似題
-
1.點P在以F1,F(xiàn)2為焦點的雙曲線
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標(biāo)原點.E:x2a2-y2b2=1
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過點P作直線分別與雙曲線漸近線相交于P1,P2兩點,且,OP1?OP2=-274,求雙曲線E的方程;2PP1+PP2=0
(Ⅲ)若過點Q(m,0)(m為非零常數(shù))的直線l與(2)中雙曲線E相交于不同于雙曲線頂點的兩點M、N,且(λ為非零常數(shù)),問在x軸上是否存在定點G,使MQ=λQN?若存在,求出所有這種定點G的坐標(biāo);若不存在,請說明理由.F1F2⊥(GM-λGN)發(fā)布:2024/12/29 10:0:1組卷:65引用:5難度:0.7 -
2.已知兩個定點坐標(biāo)分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點任意一點到兩定點的距離之差的絕對值等于2
.5
(1)求曲線C的方程;
(2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點,求△ABF2的面積.發(fā)布:2024/12/29 10:30:1組卷:85引用:1難度:0.9 -
3.若過點(0,-1)的直線l與拋物線y2=2x有且只有一個交點,則這樣的直線有( )條.
發(fā)布:2024/12/29 10:30:1組卷:26引用:5難度:0.7