中國古代數(shù)學(xué)名著《九章算術(shù)》中記載:“芻(chú)甍(méng)者,下有袤有廣,而上有袤無廣.芻,草也.甍,屋蓋也.”翻譯為“底面有長有寬為矩形,頂部只有長沒有寬為一條樓.芻字面意思為茅草屋頂.”現(xiàn)有一個芻如圖所示,四邊形ABCD為正方形,四邊形ABFE,CDEF為兩個全等的等腰梯形,AB=4,EF∥AB,AB=2EF,EA=ED=FB=FC=17.
(1)求二面角A-EF-C的大?。?br />(2)求三棱錐A-BDF的體積;
(3)點(diǎn)N在直線AD上,滿足AN=mAD(0<m<1),在直線CF上是否存在點(diǎn)M,使NF∥平面BDM?若存在,求出CMMF的值;若不存在,請說明理由.
17
CM
MF
【考點(diǎn)】二面角的平面角及求法;棱柱、棱錐、棱臺的體積.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:789引用:3難度:0.1
相似題
-
1.在多面體ABCDEF中,底面ABCD是梯形,四邊形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=
.5
(1)求證:平面EBC⊥平面EBD;
(2)設(shè)M為線段EC上一點(diǎn),3=EM,求二面角M-BD-E的平面角的余弦值.EC發(fā)布:2025/1/2 8:0:1組卷:557引用:6難度:0.3 -
2.如圖,四邊形ABCD為梯形,四邊形CDEF為矩形,平面ABCD⊥平面CDEF,∠BAD=∠ADC=90°,AB=AD=DE=
CD,M為AE的中點(diǎn).12
(1)證明:AC∥平面MDF;
(2)求平面MDF與平面BCF的夾角的大小.發(fā)布:2025/1/2 8:0:1組卷:141引用:1難度:0.6 -
3.在如圖所示的多面體中,平面ABB1A1⊥平面ABCD,四邊形ABB1A1是邊長為2的菱形,四邊形ABCD為直角梯形,四邊形BCC1B1為平行四邊形,且AB∥CD,AB⊥BC,CD=1
(1)若E,F(xiàn)分別為A1C,BC1的中點(diǎn),求證:EF⊥平面AB1C1;
(2)若∠A1AB=60°,AC1與平面ABCD所成角的正弦值,求二面角A1-AC1-D的余弦值.55發(fā)布:2025/1/2 8:0:1組卷:143引用:2難度:0.4
把好題分享給你的好友吧~~