試卷征集
加入會員
操作視頻

【問題呈現(xiàn)】
小強在一次學(xué)習(xí)過程中遇到了下面的問題:
如圖1,在△ABC與△DEF中,AB=DE,∠A=∠D,AC+BC=DF.求證:∠ACB=2∠F.
【方法探究】
(1)閱讀小強的證明過程并完成填空:
證明:如圖2,延長AC至點G,使CG=CB,連結(jié)BG.
∵CG=BC,
∴∠CBG=∠
G
G
等邊對等角
等邊對等角
).
∴∠ACB=∠CBG+∠G=2∠G.
∵AC+BC=DF,AC+CG=AG.
∴AG=
DF
DF

∵∠A=∠D,AB=DE,
∴△ABG≌△DEF(
SAS
SAS
).
∴∠G=∠F.
∴∠ACB=2∠F.
反思:解決這個問題,除用上述方法外,還可以在DF上截取DM=AC,連接ME,通過證明△ABC≌△DEM解決問題(如圖3,證明過程:略).
【方法應(yīng)用】
(2)如圖4,在△ABC與△ADC中,若∠BAC=∠DAC=30°,∠ACB=110°,AD+DC=AB,求∠D的度數(shù).

【考點】三角形綜合題
【答案】G;等邊對等角;DF;SAS
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/27 14:0:2組卷:12引用:1難度:0.5
相似題
  • 1.已知直角△ABC,∠BAC=90°,D是斜邊BC的中點,E、F分別是AB、AC邊上的點,且DE⊥DF,連接EF.

    (1)如圖1,求證:∠BED=∠AFD;
    (2)如圖1,求證:BE2+CF2=EF2
    (3)如圖2,當(dāng)∠ABC=45°,若BE=4,CF=3,求△DEF的面積.

    發(fā)布:2024/12/23 14:0:1組卷:185引用:3難度:0.2
  • 2.已知A(0,4),B(-4,0),D(9,4),C(12,0),動點P從點A出發(fā),在線段AD上,以每秒1個單位的速度向點D運動:動點Q從點C出發(fā),在線段BC上,以每秒2個單位的速度向點B運動,點P、Q同時出發(fā),當(dāng)其中一個點到達終點時,另一個點隨之停止運動,設(shè)運動時間為t(秒).

    (1)當(dāng)t=
    秒時,PQ平分線段BD;
    (2)當(dāng)t=
    秒時,PQ⊥x軸;
    (3)當(dāng)
    PQC
    =
    1
    2
    D
    時,求t的值.

    發(fā)布:2024/12/23 15:0:1組卷:144引用:3難度:0.1
  • 3.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點F在BC上,點A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點F順時針旋轉(zhuǎn)(當(dāng)點D落在射線FB上時停止旋轉(zhuǎn)).
    (1)當(dāng)∠AFD=
    °時,DF∥AC;當(dāng)∠AFD=
    °時,DF⊥AB;
    (2)在旋轉(zhuǎn)過程中,DF與AB的交點記為P,如圖2,若△AFP有兩個內(nèi)角相等,求∠APD的度數(shù);
    (3)當(dāng)邊DE與邊AB、BC分別交于點M、N時,如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說明理由.

    發(fā)布:2024/12/23 18:30:1組卷:1692引用:10難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正