對于以x為自變量的兩個函數(shù)y與g,令w=y-g,我們不妨把函數(shù)w稱之為函數(shù)y與g的“輔助函數(shù)”例如:以x為自變量的函數(shù)y=x2與g=2x-1,它們的“輔助函數(shù)”為w=y-g=x2-2x+1,同時,由于w=x2-2x+1=(x-1)2≥0恒成立,所以借助該輔助函數(shù)可以證明:不論自變量x取何值y≥g恒成立.
(1)已知以x為自變量的函數(shù)y=1x+4與g=x2+5+1x,請求出函數(shù)y與g的“輔助函數(shù)”,并證明:不論自變量x取何值,y<g恒成立;
(2)已知以x為自變量的函數(shù)y=4x+n與g=x+1當x>1時,對于x的每一個值,函數(shù)y與g的“輔助函數(shù)”w>0恒成立,求n的取值范圍;
(3)已知以x為自變量的函數(shù)y=ax2+bx+c與g=-bx-2c(a、b、c為常數(shù)且a>0,b≠0),點A(32,0)、B(-3,y1)、C(1,y2)是它們的“輔助函數(shù)”w的圖象上的三點,且滿足3c<y2<y1,求函數(shù)w的圖象截x軸得到的線段長度的取值范圍.
1
x
+
4
與
g
=
x
2
+
5
+
1
x
3
2
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/29 8:6:34組卷:476引用:1難度:0.5
相似題
-
1.反比例函數(shù)y=
圖象上有三個點(-2,y1),(-1,y2),(1,y3),則y1、y2、y3的大小關系是( ?。?/h2>k2+1x發(fā)布:2024/12/23 16:30:2組卷:35引用:3難度:0.6 -
2.已知點(-1,y1),(2,y2),(3,y3)在反比例函數(shù)y=-
圖象上,則y1,y2,y3之間的大小關系是( ?。?/h2>6x發(fā)布:2024/12/23 16:30:2組卷:39引用:4難度:0.7 -
3.如圖,在Rt△OAB中,∠OBA=90°,OA在x軸上,AC平分∠OAB,OD平分∠AOB,AC與OD相交于點E,且OC=
,CE=5,反比例函數(shù)2的圖象經(jīng)過點E,則k的值為 .y=kx(k≠0,x>0)發(fā)布:2024/12/23 19:0:2組卷:1638引用:6難度:0.5