如圖,某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上.在小艇出發(fā)時,輪船位于港口O北偏西30°且與該港口相距20海里的A處,并正以30海里/時的航行速度沿正東方向勻速行駛.假設(shè)該小艇沿直線方向以v海里/時的航行速度勻速行駛,經(jīng)過t小時與輪船相遇.
(Ⅰ)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
(Ⅱ)假設(shè)小艇的最高航行速度只能達(dá)到30海里/時,試設(shè)計航行方案(即確定航行方向和航行速度的大小),使得小艇能以最短時間與輪船相遇.
【考點】解三角形.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:15引用:1難度:0.5
相似題
-
1.在①
,②2a-c=2bcosC,③(a-b)(a+b)=(a-c)c這三個條件中任選一個,補充在下面的問題中,并解答該問題.3(a-bcosC)=csinB
在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,且滿足 _____,.b=23
(1)若a+c=4,求△ABC的面積;
(2)求△ABC周長l的取值范圍.發(fā)布:2024/12/29 13:0:1組卷:278引用:4難度:0.5 -
2.已知燈塔A在海洋觀察站C的北偏東65°,距離海洋觀察站C的距離為akm,燈塔B在海洋觀察站C的南偏東55°,距離海洋觀察站C的距離為3akm,則燈塔A與燈塔B的距離為( )
發(fā)布:2024/12/30 4:0:3組卷:50引用:3難度:0.7 -
3.如圖,在鐵路建設(shè)中,需要確定隧道兩端的距離(單位:百米),已測得隧道兩端點A,B到某一點C的距離分別為5和8,∠ACB=60°,則A,B之間的距離為( ?。?/h2>
發(fā)布:2024/12/29 13:0:1組卷:287引用:5難度:0.7
把好題分享給你的好友吧~~