綜合與實(shí)踐:問題引入:課外興趣小組活動(dòng)時(shí),老師提出這樣的問題:如圖1,在△ABC中,AB=5,AC=3,求BC邊上的中線AD的取值范圍.小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到E,使得DE=AD,再連接BE,把AB,AC,2AD集中在△ABE中,利用三角形的三邊關(guān)系從而求出AD的取值范圍.從中他總結(jié)出:解題時(shí),條件中若出現(xiàn)“中線”“中點(diǎn)”等條件,可以考慮將中線加倍延長,構(gòu)造全等三角形,把分散的條件和需求證的結(jié)論集中到同一個(gè)三角形中.
理解應(yīng)用:(1)請你根據(jù)小明的思路,求AD的取值范圍;
感悟應(yīng)用:(2)如圖2,在△ABC中,D是BC邊上的一點(diǎn),AE是△ABD的中線,CD=AB,∠BDA=∠BAD,求證:AC=2AE;
延伸拓展:(3)如圖3,在△ABC和△ADE中,∠DAE=∠BAC=90°,AD=AE,AB=AC,連接BE、CD,過點(diǎn)A作AM⊥CD于點(diǎn)M,反向延長AM交BE于點(diǎn)N,求證:CD=2AN.
【考點(diǎn)】三角形綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/15 2:0:9組卷:325引用:2難度:0.3
相似題
-
1.已知直角△ABC,∠BAC=90°,D是斜邊BC的中點(diǎn),E、F分別是AB、AC邊上的點(diǎn),且DE⊥DF,連接EF.
(1)如圖1,求證:∠BED=∠AFD;
(2)如圖1,求證:BE2+CF2=EF2;
(3)如圖2,當(dāng)∠ABC=45°,若BE=4,CF=3,求△DEF的面積.發(fā)布:2024/12/23 14:0:1組卷:182引用:3難度:0.2 -
2.已知A(0,4),B(-4,0),D(9,4),C(12,0),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線段AD上,以每秒1個(gè)單位的速度向點(diǎn)D運(yùn)動(dòng):動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線段BC上,以每秒2個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)P、Q同時(shí)出發(fā),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=秒時(shí),PQ平分線段BD;
(2)當(dāng)t=秒時(shí),PQ⊥x軸;
(3)當(dāng)時(shí),求t的值.∠PQC=12∠D發(fā)布:2024/12/23 15:0:1組卷:142引用:3難度:0.1 -
3.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點(diǎn)F在BC上,點(diǎn)A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點(diǎn)F順時(shí)針旋轉(zhuǎn)(當(dāng)點(diǎn)D落在射線FB上時(shí)停止旋轉(zhuǎn)).
(1)當(dāng)∠AFD=°時(shí),DF∥AC;當(dāng)∠AFD=°時(shí),DF⊥AB;
(2)在旋轉(zhuǎn)過程中,DF與AB的交點(diǎn)記為P,如圖2,若△AFP有兩個(gè)內(nèi)角相等,求∠APD的度數(shù);
(3)當(dāng)邊DE與邊AB、BC分別交于點(diǎn)M、N時(shí),如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說明理由.發(fā)布:2024/12/23 18:30:1組卷:1690引用:10難度:0.1
把好題分享給你的好友吧~~