已知雙曲線(xiàn)C:x2a2-y2b2=1(a>0,b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線(xiàn)上,若|PF1|-|PF2|=233b,且雙曲線(xiàn)焦距為4.
(1)求雙曲線(xiàn)C的方程;
(2)如果Q為雙曲線(xiàn)C右支上的動(dòng)點(diǎn),在x軸負(fù)半軸上是否存在定點(diǎn)M使得∠QF2M=2∠QMF2?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.
C
:
x
2
a
2
-
y
2
b
2
=
1
(
a
>
0
,
b
>
0
)
|
P
F
1
|
-
|
P
F
2
|
=
2
3
3
b
【考點(diǎn)】直線(xiàn)與雙曲線(xiàn)的綜合;雙曲線(xiàn)的幾何特征.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/21 5:0:1組卷:116引用:3難度:0.5
相似題
-
1.已知雙曲線(xiàn)C:
=1(a>0,b>0)的左頂點(diǎn)為A,過(guò)左焦點(diǎn)F的直線(xiàn)與C交于P,Q兩點(diǎn).當(dāng)PQ⊥x軸時(shí),|PA|=x2a2-y2b2,△PAQ的面積為3.10
(1)求C的方程;
(2)證明:以PQ為直徑的圓經(jīng)過(guò)定點(diǎn).發(fā)布:2024/12/18 0:0:1組卷:687引用:8難度:0.5 -
2.如圖,在平面直角坐標(biāo)系xOy中,已知等軸雙曲線(xiàn)E:
(a>0,b>0)的左頂點(diǎn)A,過(guò)右焦點(diǎn)F且垂直于x軸的直線(xiàn)與E交于B,C兩點(diǎn),若△ABC的面積為x2a2-y2b2=1.2+1
(1)求雙曲線(xiàn)E的方程;
(2)若直線(xiàn)l:y=kx-1與雙曲線(xiàn)E的左,右兩支分別交于M,N兩點(diǎn),與雙曲線(xiàn)E的兩條漸近線(xiàn)分別交于P,Q兩點(diǎn),求的取值范圍.|MN||PQ|發(fā)布:2024/10/31 12:30:1組卷:521引用:10難度:0.5 -
3.已知雙曲線(xiàn)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F1的直線(xiàn)與C的兩條漸近線(xiàn)分別交于A,B兩點(diǎn),若A為線(xiàn)段BF1的中點(diǎn),且BF1⊥BF2,則C的離心率為( ?。?/h2>C:x2a2-y2b2=1(a>0,b>0)發(fā)布:2024/11/8 21:0:2組卷:436引用:8難度:0.5