【學(xué)習(xí)心得】
(1)小雯同學(xué)在學(xué)習(xí)完“圓”這一章內(nèi)容后,感覺(jué)到一些幾何問(wèn)題如果添加輔助圓,運(yùn)用圓的知識(shí)解決,可以使問(wèn)題變得非常容易.例如:如圖1,在△ABC中,AB=AC,∠BAC=90°,D是△ABC外一點(diǎn),且AD=AC,求∠BDC的度數(shù).若以點(diǎn)A為圓心,AB長(zhǎng)為半徑作輔助圓⊙A,則C,D兩點(diǎn)必在⊙A上,∠BAC是⊙A的圓心角,∠BDC是⊙A的圓周角,則∠BDC=45°45°.
【初步運(yùn)用】
(2)如圖2,在四邊形ABCD中,∠BAD=∠BCD=90°,∠BDC=23°,求∠BAC的度數(shù);
【方法遷移】
(3)如圖3,已知線段AB和直線l,用直尺和圓規(guī)在1上作出所有的點(diǎn)P,使得∠APB=30°(不寫作法,保留作圖痕跡);
【問(wèn)題拓展】
(4)①如圖4①,已知矩形ABCD,AB=2,BC=m,M為邊CD上的點(diǎn).若滿足∠AMB=45°的點(diǎn)M恰好有兩個(gè),則m的取值范圍為 2≤m<2+12≤m<2+1,②如圖4②,在△ABC中,∠BAC=45°,AD是BC邊上的高,且BD=6,CD=2,求AD的長(zhǎng).
2
+
1
2
+
1
【考點(diǎn)】圓的綜合題.
【答案】45°;2≤m<
2
+
1
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/15 3:0:8組卷:459引用:2難度:0.2
相似題
-
1.如圖,AB是圓O的直徑,AB=6,D是半圓ADB上的一點(diǎn),C是弧BD的中點(diǎn).
(1)若∠ABD=30°,求BC的長(zhǎng)和由弦BC、BD、和弧CD圍成的圖形面積;
(2)若弧AD的度數(shù)是120度,在半徑OB上是否存在點(diǎn)P,使得PC+PD的值最小,如果存在,請(qǐng)?jiān)趥溆脠D中畫出P的位置,并求PC+PD的最小值,如果不存在,請(qǐng)說(shuō)明理由.發(fā)布:2025/1/28 8:0:2組卷:42引用:0難度:0.3 -
2.如圖,AB是圓O的直徑,弦CD⊥AB于G,射線DO與直線CE相交于點(diǎn)E,直線DB與CE交于點(diǎn)H,且∠BDC=∠BCH.
(1)求證:直線CE是圓O的切線.
(2)如圖1,若OG=BG,BH=1,直接寫出圓O的半徑;
(3)如圖2,在(2)的條件下,將射線DO繞D點(diǎn)逆時(shí)針旋轉(zhuǎn),得射線DM,DM與AB交于點(diǎn)M,與圓O及切線CF分別相交于點(diǎn)N,F(xiàn),當(dāng)GM=GD時(shí),求切線CF的長(zhǎng).發(fā)布:2025/1/28 8:0:2組卷:775引用:2難度:0.1 -
3.如圖,AB是圓O的直徑,弦CD與AB交于點(diǎn)H,∠BDC=∠CBE.
(1)求證:BE是圓O的切線;
(2)若CD⊥AB,AC=2,BH=3,求劣弧BC的長(zhǎng);
(3)如圖,若CD∥BE,作DF∥BC,滿足BC=2DF,連接FH、BF,求證:FH=BF.發(fā)布:2025/1/28 8:0:2組卷:96引用:1難度:0.1