已知函數(shù)f(x)=loga(x+2)(a>0且a≠1),g(x)=cos(πx).
(1)求不等式f(x)≥1的解集;
(2)若函數(shù)f(x)過點(7,2),并且函數(shù)F(x)=f(x)+k?g(x)(k∈R)滿足F(-1)=-2,求實數(shù)a與k的值;
(3)在(2)的條件下,判斷函數(shù)F(x)在[-1,0]上的單調(diào)性(不必說明理由).若a∈[0,1]時,不等式F(a2+12sin2x-1)-F(a(sinx-cosx))<0對任意x∈[0,π4]恒成立,求實數(shù)a的取值范圍.
a
2
1
2
π
4
【考點】函數(shù)恒成立問題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:64引用:4難度:0.2
相似題
-
1.把符號
稱為二階行列式,規(guī)定它的運算法則為aamp;bcamp;d.已知函數(shù)aamp;bcamp;d=ad-bc.f(θ)=cosθamp;1-λsinθ2amp;cosθ
(1)若,θ∈R,求f(θ)的值域;λ=12
(2)函數(shù),若對?x∈[-1,1],?θ∈R,都有g(x)-1≥f(θ)恒成立,求實數(shù)λ的取值范圍.g(x)=x2amp;-11amp;1x2+1發(fā)布:2024/12/29 10:30:1組卷:13引用:5難度:0.5 -
2.對于任意x1,x2∈(2,+∞),當x1<x2時,恒有
成立,則實數(shù)a的取值范圍是alnx2x1-2(x2-x1)<0發(fā)布:2024/12/29 7:30:2組卷:61引用:3難度:0.6 -
3.設函數(shù)f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數(shù)x0,使得f(x0)<0,則a的取值范圍是.
發(fā)布:2024/12/29 5:0:1組卷:536引用:36難度:0.5