已知函數(shù)f(x)=ax2-xlnx+2a(a∈R且a≠0).
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若不等式f(x)≤0對任意x∈(0,+∞)恒成立,求實(shí)數(shù)a的取值范圍.
f
(
x
)
=
a
x
2
-
xlnx
+
2
a
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:218引用:1難度:0.4
相似題
-
1.直線y=
x+b是曲線y=lnx的一條切線,則實(shí)數(shù)b的值為( )12發(fā)布:2025/1/7 12:30:6組卷:63引用:5難度:0.9 -
2.設(shè)曲線
在點(diǎn)(1,1)處的切線與直線ax+y+1=0垂直,則a=( ?。?/h2>y=lnxx+1發(fā)布:2024/12/29 15:30:4組卷:10引用:3難度:0.7 -
3.曲線y=lnx上一點(diǎn)P和坐標(biāo)原點(diǎn)O的連線恰好是該曲線的切線,則點(diǎn)P的橫坐標(biāo)為( ?。?/h2>
發(fā)布:2025/1/3 16:0:5組卷:12引用:6難度:0.7
把好題分享給你的好友吧~~