如圖,在平面直角坐標(biāo)系xOy中,以(3,0)為圓心作⊙P,⊙P與x軸交于A(yíng)、B,與y軸交于點(diǎn)C(0,2),Q為⊙P上不同于A(yíng)、B的任意一點(diǎn),連接QA、QB,過(guò)P點(diǎn)分別作PE⊥QA于E,PF⊥QB于F.設(shè)點(diǎn)Q的橫坐標(biāo)為x,PE2+PF2=y.當(dāng)Q點(diǎn)在⊙P上順時(shí)針從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B的過(guò)程中,下列圖象中能表示y與x的函數(shù)關(guān)系的部分圖象是( ?。?/h1>
【考點(diǎn)】圓的綜合題.
【答案】A
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:638引用:6難度:0.5
相似題
-
1.如圖,AB是圓O的直徑,弦CD與AB交于點(diǎn)H,∠BDC=∠CBE.
(1)求證:BE是圓O的切線(xiàn);
(2)若CD⊥AB,AC=2,BH=3,求劣弧BC的長(zhǎng);
(3)如圖,若CD∥BE,作DF∥BC,滿(mǎn)足BC=2DF,連接FH、BF,求證:FH=BF.發(fā)布:2025/1/28 8:0:2組卷:96引用:1難度:0.1 -
2.如圖,AB是圓O的直徑,弦CD⊥AB于G,射線(xiàn)DO與直線(xiàn)CE相交于點(diǎn)E,直線(xiàn)DB與CE交于點(diǎn)H,且∠BDC=∠BCH.
(1)求證:直線(xiàn)CE是圓O的切線(xiàn).
(2)如圖1,若OG=BG,BH=1,直接寫(xiě)出圓O的半徑;
(3)如圖2,在(2)的條件下,將射線(xiàn)DO繞D點(diǎn)逆時(shí)針旋轉(zhuǎn),得射線(xiàn)DM,DM與AB交于點(diǎn)M,與圓O及切線(xiàn)CF分別相交于點(diǎn)N,F(xiàn),當(dāng)GM=GD時(shí),求切線(xiàn)CF的長(zhǎng).發(fā)布:2025/1/28 8:0:2組卷:775引用:2難度:0.1 -
3.如圖,AB是圓O的直徑,AB=6,D是半圓ADB上的一點(diǎn),C是弧BD的中點(diǎn).
(1)若∠ABD=30°,求BC的長(zhǎng)和由弦BC、BD、和弧CD圍成的圖形面積;
(2)若弧AD的度數(shù)是120度,在半徑OB上是否存在點(diǎn)P,使得PC+PD的值最小,如果存在,請(qǐng)?jiān)趥溆脠D中畫(huà)出P的位置,并求PC+PD的最小值,如果不存在,請(qǐng)說(shuō)明理由.發(fā)布:2025/1/28 8:0:2組卷:42引用:0難度:0.3