【實驗操作】
已知線段BC=22,用量角器作∠BAC=30°,興趣小組通過操作、觀察、討論后發(fā)現(xiàn):點A的位置不唯一,它在以BC為弦的圓弧上(點B、C除外),小明同學畫出了符合要求的一條圓?。▓D1).
(1)請你幫助解決小明同學提出的問題:
①該弧所在圓的半徑長為 2222;②△ABC面積的最大值為 23+423+4;
(2)【拓展探究】
小亮同學所畫的角的頂點在圖1所示的弓形內部,記為A',請證明∠BA'C>30°;
(3)【解決問題】
如圖2,在平面直角坐標系第一象限內有一點B(22,m),過點B作AB⊥y軸,BC⊥x軸,垂足分別為A、C,若點P在線段AB上滑動(點P可以與點A、B重合),使得∠OPC=45°的位置有兩個,則m的取值范圍是 22≤m<2+2.22≤m<2+2..
BC
=
2
2
2
2
3
3
B
(
2
2
,
m
)
2
2
2
2
【考點】圓的綜合題.
【答案】2;2+4;2≤m<2+.
2
3
2
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/10/10 13:0:2組卷:49引用:1難度:0.1
相似題
-
1.如圖,AB是圓O的直徑,弦CD與AB交于點H,∠BDC=∠CBE.
(1)求證:BE是圓O的切線;
(2)若CD⊥AB,AC=2,BH=3,求劣弧BC的長;
(3)如圖,若CD∥BE,作DF∥BC,滿足BC=2DF,連接FH、BF,求證:FH=BF.發(fā)布:2025/1/28 8:0:2組卷:96引用:1難度:0.1 -
2.如圖,AB是圓O的直徑,弦CD⊥AB于G,射線DO與直線CE相交于點E,直線DB與CE交于點H,且∠BDC=∠BCH.
(1)求證:直線CE是圓O的切線.
(2)如圖1,若OG=BG,BH=1,直接寫出圓O的半徑;
(3)如圖2,在(2)的條件下,將射線DO繞D點逆時針旋轉,得射線DM,DM與AB交于點M,與圓O及切線CF分別相交于點N,F(xiàn),當GM=GD時,求切線CF的長.發(fā)布:2025/1/28 8:0:2組卷:775引用:2難度:0.1 -
3.如圖,AB是圓O的直徑,AB=6,D是半圓ADB上的一點,C是弧BD的中點.
(1)若∠ABD=30°,求BC的長和由弦BC、BD、和弧CD圍成的圖形面積;
(2)若弧AD的度數(shù)是120度,在半徑OB上是否存在點P,使得PC+PD的值最小,如果存在,請在備用圖中畫出P的位置,并求PC+PD的最小值,如果不存在,請說明理由.發(fā)布:2025/1/28 8:0:2組卷:42引用:0難度:0.3