試卷征集
加入會(huì)員
操作視頻

為了求一個(gè)棱長(zhǎng)為
2
的正四面體體積,小明同學(xué)設(shè)計(jì)如下解法:構(gòu)造一個(gè)棱長(zhǎng)為1的正方體,如圖1:則四面體ACB1D1為棱長(zhǎng)是
2
的正四面體,且有
V
四面體
AC
B
1
D
1
=
V
正方體
-
V
B
-
AC
B
1
-
V
A
1
-
A
B
1
D
1
-
V
C
1
-
B
1
C
D
1
-
V
D
-
AC
D
1
=
1
3
V
正方體
=
1
3

學(xué)以致用:
(1)如圖2,一個(gè)四面體三組對(duì)棱長(zhǎng)分別為
3
,2,
5
,求此四面體外接球表面積;
(2)若四面體ABCD每組對(duì)棱長(zhǎng)分別相等,求證:該四面體的四個(gè)面都是銳角三角形.

【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/22 8:0:8組卷:9引用:2難度:0.5
相似題
  • 1.如圖所示,AB為圓O的直徑,PC⊥平面ABC,Q在線段PA上.
    (1)求證:平面BCQ⊥平面ACQ;
    (2)若Q為靠近P的一個(gè)三等分點(diǎn),PC=BC=1,
    AC
    =
    2
    2
    ,求VP-BCQ的值.

    發(fā)布:2025/1/20 8:0:1組卷:35引用:3難度:0.6
  • 2.如圖,△ABC內(nèi)接于圓O,AB是圓O的直徑,AB=2,BC=1,設(shè)AE與平面ABC所成的角為θ,且tanθ=
    3
    2
    ,四邊形DCBE為平行四邊形,DC⊥平面ABC.
    (1)求三棱錐C-ABE的體積;
    (2)證明:平面ACD⊥平面ADE;
    (3)在CD上是否存在一點(diǎn)M,使得MO∥平面ADE?證明你的結(jié)論.

    發(fā)布:2025/1/20 8:0:1組卷:95引用:3難度:0.1
  • 3.如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD的邊BC垂直于圓O所在的平面,且AB=2,AD=EF=1.
    (Ⅰ)設(shè)CD的中點(diǎn)為M,求證:EM∥平面DAF;
    (Ⅱ)求三棱錐B-CME的體積.

    發(fā)布:2025/1/20 8:0:1組卷:16引用:1難度:0.5
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正