【問(wèn)題情境 建構(gòu)函數(shù)】
(1)如圖1,在矩形ABCD中,AB=4,M是CD的中點(diǎn),AE⊥BM,垂足為E.設(shè)BC=x,AE=y,試用含x的代數(shù)式表示y.
【由數(shù)想形 新知初探】
(2)在上述表達(dá)式中,y與x成函數(shù)關(guān)系,其圖象如圖2所示.若x取任意實(shí)數(shù),此時(shí)的函數(shù)圖象是否具有對(duì)稱(chēng)性?若有,請(qǐng)說(shuō)明理由,并在圖2上補(bǔ)全函數(shù)圖象.
![](https://img.jyeoo.net/quiz/images/svg/202306/411/955d2348.png)
【數(shù)形結(jié)合 深度探究】
(3)在“x取任意實(shí)數(shù)”的條件下,對(duì)上述函數(shù)繼續(xù)探究,得出以下結(jié)論:①函數(shù)值y隨x的增大而增大;②函數(shù)值y的取值范圍是-42<y<42;③存在一條直線(xiàn)與該函數(shù)圖象有四個(gè)交點(diǎn);④在圖象上存在四點(diǎn)A、B、C、D,使得四邊形ABCD是平行四邊形.其中正確的是 ①④①④.(寫(xiě)出所有正確結(jié)論的序號(hào))
【抽象回歸 拓展總結(jié)】
(4)若將(1)中的“AB=4”改成“AB=2k”,此時(shí)y關(guān)于x的函數(shù)表達(dá)式是 y=2kxx2+k2x2+k2(x>0,k>0)y=2kxx2+k2x2+k2(x>0,k>0);一般地,當(dāng)k≠0,x取任意實(shí)數(shù)時(shí),類(lèi)比一次函數(shù)、反比例函數(shù)、二次函數(shù)的研究過(guò)程,探究此類(lèi)函數(shù)的相關(guān)性質(zhì)(直接寫(xiě)出3條即可).
2
2
2
kx
x
2
+
k
2
x
2
+
k
2
2
kx
x
2
+
k
2
x
2
+
k
2
【考點(diǎn)】反比例函數(shù)綜合題.
【答案】①④;y=(x>0,k>0)
2
kx
x
2
+
k
2
x
2
+
k
2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/7 8:0:9組卷:1843引用:2難度:0.3
相似題
-
1.如圖,已知直線(xiàn)y=x-2與雙曲線(xiàn)y=
(x>0)交于點(diǎn)A(3,m).kx
(1)求m,k的值;
(2)連接OA,在x軸的正半軸上是否存在點(diǎn)Q,使△AOQ是等腰三角形?若存在,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.發(fā)布:2024/12/23 13:0:2組卷:239引用:19難度:0.5 -
2.已知:如圖,梯形ABCD中,AD∥BC,BC⊥y軸于C,AD=1,BC=4,tan∠ABC=
.反比23例函數(shù)y=
的圖象過(guò)頂點(diǎn)A、B.kx
(1)求k的值;
(2)作BH⊥x軸于H,求五邊形ABHOD的面積.發(fā)布:2025/1/28 8:0:2組卷:68引用:15難度:0.3 -
3.如圖,矩形ABCD的頂點(diǎn)A、B的坐標(biāo)分別是A(-2,0)、B(0,-4),反比例函數(shù)y=
的圖象經(jīng)過(guò)頂點(diǎn)C,AD邊交y軸于點(diǎn)E,若四邊形BCDE的面積等于△ABE面積的5倍,則k的值等于.kx發(fā)布:2024/12/23 12:30:2組卷:822引用:2難度:0.7
相關(guān)試卷