如圖1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點D在邊AB上運動,DE平分∠CDB交邊BC于點E,EM⊥BD垂足為M,EN⊥CD垂足為N.
(1)當AD=CD時,求證:DE∥AC;
(2)探究:AD為何值時,△BME與△CNE相似?
(3)探究:AD為何值時,四邊形MEND與△BDE的面積相等?
【考點】相似三角形的判定與性質;平行線的判定與性質.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:989引用:30難度:0.3
相似題
-
1.如圖,梯形ABCD中AD∥BC,對角線AC、BD交于0點,△AOD與△DOC的面積之比為3:7,則AD:BC=
發(fā)布:2025/1/28 8:0:2組卷:39引用:1難度:0.7 -
2.如圖,在梯形ABCD中,AB∥CD,對角線AC、BD相交于點O,如果S△AOB=2S△AOD,AC=10,那么OC的長是.
發(fā)布:2025/1/28 8:0:2組卷:107引用:1難度:0.4 -
3.如圖,AB是圓O的直徑,C是半徑OB的中點,D是OB延長線上一點,且BD=OB,直線MD與圓O相交于點M、T(不與A、B重合),DN與圓O相切于點N,連接MC,MB,OT.
(Ⅰ)求證:DT?DM=DO?DC;
(Ⅱ)若∠DOT=60°,試求∠BMC的大小.發(fā)布:2025/1/28 8:0:2組卷:363引用:1難度:0.3