試卷征集
加入會員
操作視頻

已知離心率為
2
2
的橢圓C的中心在原點O,對稱軸為坐標軸,F(xiàn)1,F(xiàn)2為左右焦點,M為橢圓上的點,且
|
M
F
1
|
+
|
M
F
2
|
=
2
2
.直線l過橢圓外一點P(m,0)(m<0),與橢圓交于A(x1,y1),B(x2,y2)兩點,滿足y2>y1>0.
(1)求橢圓C的標準方程;
(2)若m=-2,求三角形AOB面積的取值范圍;
(3)對于任意點P,是否總存在唯一的直線l,使得
F
1
A
F
2
B
成立,若存在,求出直線l的斜率;否則說明理由.

【考點】橢圓與平面向量
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:68引用:4難度:0.5
相似題
  • 1.橢圓C:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,過點F1的直線l交橢圓C于A,B兩點,若|F1F2|=|AF2|,
    A
    F
    1
    =2
    F
    1
    B
    ,則橢圓C的離心率為( ?。?/h2>

    發(fā)布:2024/12/6 18:30:2組卷:753引用:6難度:0.6
  • 2.在直角坐標系xOy中,已知橢圓
    C
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    a
    b
    0
    的右焦點為F(1,0),過點F的直線交橢圓C于A,B兩點,|AB|的最小值為
    2

    (Ⅰ)求橢圓C的標準方程;
    (Ⅱ)若與A,B不共線的點P滿足
    OP
    =
    λ
    OA
    +
    2
    -
    λ
    OB
    ,求△PAB面積的取值范圍.

    發(fā)布:2024/12/29 13:30:1組卷:105引用:3難度:0.4
  • 3.已知橢圓
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)的左、右焦點分別為F1、F2,經(jīng)過F1的直線交橢圓于A,B,△ABF2的內(nèi)切圓的圓心為I,若3
    IB
    +4
    IA
    +5
    I
    F
    2
    =
    0
    ,則該橢圓的離心率是( ?。?/h2>

    發(fā)布:2024/11/28 2:30:1組卷:1181引用:12難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正