為有效防控疫情,于2021年9月開始,多省份相繼啟動新冠疫苗加強免疫接種工作.新冠疫苗接種一段時間后,有保護效果削弱的情況存在,加強針的接種則會使這種下降出現(xiàn)“強勢反彈”.研究結(jié)果顯示,接種加強針以后,受種者的抗體水平將大幅提升,加強免疫14天后,抗體水平相當(dāng)于原來的10-30倍,6個月后,能維持在較高水平,并且對德爾塔等變異株出現(xiàn)良好交叉中和作用.
某市開展加強免疫接種工作以來,在某一周的接種人數(shù)(單位:萬人)如下表所示:
星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期天 | |
當(dāng)日接種人數(shù)y(萬人) | 1.7 | 1.9 | 2.1 | 2.3 | 2.4 | 2.5 | a |
(Ⅰ)若y與x(x=1,2,3,4)具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;
(Ⅱ)根據(jù)(Ⅰ)中所求的線性回歸方程分別計算星期五,星期六的預(yù)報值
?
y
|
?
y
-
y
|
≤
0
.
1
參考公式:
?
b
=
n
∑
i
=
1
(
x
i
-
x
)
(
y
i
-
y
)
n
∑
i
=
1
(
x
i
-
x
)
2
=
n
∑
i
=
1
x
i
y
i
-
n
x
y
n
∑
i
=
1
x
2
i
-
n
2
?
a
=
y
-
?
b
x
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:19引用:1難度:0.5
相似題
-
1.某科研機構(gòu)為了了解氣溫對蘑菇產(chǎn)量的影響,隨機抽取了某蘑菇種植大棚12月份中5天的日產(chǎn)量y(單位:kg)與該地當(dāng)日的平均氣溫x(單位:℃)的數(shù)據(jù),得到如圖散點圖:
其中A(3,2),B(5,10),C(8,11),D(9,13),E(10,14).
(1)求出y關(guān)于x的線性回歸方程;
(2)若該地12月份某天的平均氣溫為6℃,用(1)中所求的回歸方程預(yù)測該蘑菇種植大棚當(dāng)日的產(chǎn)量.
附:線性回歸直線方程中,?y=?bx+?a,?b=n∑i=1xiyi-nxyn∑i=1x2i-nx2.?a=y-?bx發(fā)布:2024/12/29 11:30:2組卷:103引用:3難度:0.7 -
2.某農(nóng)科所對冬季晝夜溫差(最高溫度與最低溫度的差)大小與某反季節(jié)大豆新品種一天內(nèi)發(fā)芽數(shù)之間的關(guān)系進行了分析研究,他們分別記錄了12月1日至12月6日每天晝夜最高、最低的溫度(如圖1),以及實驗室每天每100顆種子中的發(fā)芽數(shù)情況(如圖2),得到如下資料:
(1)請畫出發(fā)芽數(shù)y與溫差x的散點圖;
(2)若建立發(fā)芽數(shù)y與溫差x之間的線性回歸模型,請用相關(guān)系數(shù)說明建立模型的合理性;
(3)①求出發(fā)芽數(shù)y與溫差x之間的回歸方程(系數(shù)精確到0.01);?y=?a+?bx
②若12月7日的晝夜溫差為8℃,通過建立的y關(guān)于x的回歸方程,估計該實驗室12月7日當(dāng)天100顆種子的發(fā)芽數(shù).
參考數(shù)據(jù):=2051,6∑i=1xi=75,6∑i=1yi=162,6∑i=1xiyi≈4.2,6∑i=1xi2-6x2≈6.5.6∑i=1yi2-6y2
參考公式:
相關(guān)系數(shù):r=(當(dāng)|r|>0.75時,具有較強的相關(guān)關(guān)系).n∑i=1xiyi-nx?y(n∑i=1xi2-nx2)(n∑i=1yi2-ny2)
回歸方程中斜率和截距計算公式:?y=?a+?bx=?b,n∑i=1xiyi-nx?yn∑i=1xi2-nx2=?ay-?b.x發(fā)布:2024/12/29 12:0:2組卷:181引用:5難度:0.5 -
3.兩個線性相關(guān)變量x與y的統(tǒng)計數(shù)據(jù)如表:
x 9 9.5 10 10.5 11 y 11 10 8 6 5 =?yx+40,則相應(yīng)于點(9,11)的殘差為 .?b發(fā)布:2024/12/29 12:0:2組卷:112引用:8難度:0.7