已知f(x)=2x+λ2x+1為奇函數(shù).
(1)求λ的值;
(2)若g(x)=f(2x-1)+1,n∈N*,求g(0n)+g(1n)+g(2n)+…+g(nn)的值;
(3)當(dāng)n∈N*時,h(n)=1f(n),求證:h(1)+h(2)+…+h(n)≤n+72-32n.
2
x
+
λ
2
x
+
1
g
(
0
n
)
+
g
(
1
n
)
+
g
(
2
n
)
+
…
+
g
(
n
n
)
1
f
(
n
)
7
2
-
3
2
n
【考點(diǎn)】函數(shù)恒成立問題;函數(shù)的奇偶性.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:21引用:2難度:0.3
相似題
-
1.把符號
稱為二階行列式,規(guī)定它的運(yùn)算法則為aamp;bcamp;d.已知函數(shù)aamp;bcamp;d=ad-bc.f(θ)=cosθamp;1-λsinθ2amp;cosθ
(1)若,θ∈R,求f(θ)的值域;λ=12
(2)函數(shù),若對?x∈[-1,1],?θ∈R,都有g(shù)(x)-1≥f(θ)恒成立,求實(shí)數(shù)λ的取值范圍.g(x)=x2amp;-11amp;1x2+1發(fā)布:2024/12/29 10:30:1組卷:13引用:5難度:0.5 -
2.設(shè)函數(shù)f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數(shù)x0,使得f(x0)<0,則a的取值范圍是.
發(fā)布:2024/12/29 5:0:1組卷:536引用:36難度:0.5 -
3.對于任意x1,x2∈(2,+∞),當(dāng)x1<x2時,恒有
成立,則實(shí)數(shù)a的取值范圍是alnx2x1-2(x2-x1)<0發(fā)布:2024/12/29 7:30:2組卷:61引用:3難度:0.6
把好題分享給你的好友吧~~