問題提出:一條線段沿某個(gè)方向平移一段距離后與原線段構(gòu)成一個(gè)平行四邊形.我們可以利用這一性質(zhì),將有些條件通過平移集中在一起來解決一些幾何問題.
如圖①,兩條長(zhǎng)度相等的線段AB和CD相交于O點(diǎn),∠AOC=60°,直線AC與直線BD的夾角為α,求線段AC、BD、AB滿足的數(shù)量關(guān)系.
分析:考慮將AC、BD和AB集中到同一個(gè)三角形中,以便運(yùn)用三角形的知識(shí)尋求三條線段的數(shù)量關(guān)系:
如圖②,作CE∥AB且CE=AB,則四邊形ABEC是平行四邊形,從而AC=BE;
由于CD=AB=CE,∠ECD=∠AOC=60°,所以△ECD是等邊三角形,故ED=AB;
通過平行又求得∠EBD=180°-α.
在△BED中,研究三條線段的大小關(guān)系就可以了.
如圖②,若AC=23,BD=6,α=30°,請(qǐng)直接寫出線段AB的長(zhǎng) 221221;
問題解決:
如圖③,矩形ABCD中,E、F分別是AD、CD上的點(diǎn),滿足AE=CD,DE=CF,求證:AF=2CE;
拓展應(yīng)用:
如圖④,△ABC中,∠A=45°,D、E分別在AC、AB上,BD、CE交于點(diǎn)O,BD=CE,∠BOC=120°,若BE=4,CD=32,則BD=5858.
![](https://img.jyeoo.net/quiz/images/svg/202304/518/cfbf3a83.png)
AC
=
2
3
21
21
AF
=
2
CE
CD
=
3
2
58
58
【考點(diǎn)】四邊形綜合題.
【答案】2;
21
58
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:387引用:1難度:0.1
相似題
-
1.如圖,菱形ABCD中,AB=5,連接BD,sin∠ABD=
,點(diǎn)P是射線BC上一點(diǎn)(不與點(diǎn)B重合),AP與對(duì)角線BD交于點(diǎn)E,連接EC.55
(1)求證:AE=CE;
(2)當(dāng)點(diǎn)P在線段BC上時(shí),設(shè)BP=n(0<n<5),求△PEC的面積;(用含n的代數(shù)式表示)
(3)當(dāng)點(diǎn)P在線段BC的延長(zhǎng)線上時(shí),若△PEC是直角三角形,請(qǐng)直接寫出BP的長(zhǎng).發(fā)布:2025/1/28 8:0:2組卷:254引用:1難度:0.1 -
2.如圖,在菱形ABCD中,∠ABC=60°,AB=2.過點(diǎn)A作對(duì)角線BD的平行線與邊CD的延長(zhǎng)線相交于點(diǎn)E.P為邊BD上的一個(gè)動(dòng)點(diǎn)(不與端點(diǎn)B,D重合),連接PA,PE,AC.
(1)求證:四邊形ABDE是平行四邊形;
(2)求四邊形ABDE的周長(zhǎng)和面積;
(3)記△ABP的周長(zhǎng)和面積分別為C1和S1,△PDE的周長(zhǎng)和面積分別為C2和S2,在點(diǎn)P的運(yùn)動(dòng)過程中,試探究下列兩個(gè)式子的值或范圍:①C1+C2,②S1+S2,如果是定值的,請(qǐng)直接寫出這個(gè)定值;如果不是定值的,請(qǐng)直接寫出它的取值范圍.發(fā)布:2025/1/28 8:0:2組卷:574引用:1難度:0.2 -
3.如圖,在菱形ABCD中,AB=10,sinB=
,點(diǎn)E從點(diǎn)B出發(fā)沿折線B-C-D向終點(diǎn)D運(yùn)動(dòng).過點(diǎn)E作點(diǎn)E所在的邊(BC或CD)的垂線,交菱形其它的邊于點(diǎn)F,在EF的右側(cè)作矩形EFGH.35
(1)如圖1,點(diǎn)G在AC上.求證:FA=FG.
(2)若EF=FG,當(dāng)EF過AC中點(diǎn)時(shí),求AG的長(zhǎng).
(3)已知FG=8,設(shè)點(diǎn)E的運(yùn)動(dòng)路程為s.當(dāng)s滿足什么條件時(shí),以G,C,H為頂點(diǎn)的三角形與△BEF相似(包括全等)?發(fā)布:2025/1/28 8:0:2組卷:1988引用:3難度:0.1