【問題呈現(xiàn)】
小明在學習中遇到這樣一個問題:
如圖1,在△ABC中,∠C>∠B,AE平分∠BAC,AD⊥BC于D,猜想∠B、∠C、∠EAD的數(shù)量關系.
(1)小明閱讀題目后,沒有發(fā)現(xiàn)數(shù)量關系與解題思路.于是嘗試代入∠B、∠C的值求∠EAD值,得到下面幾組對應值:
∠B/度 | 10 | 30 | 30 | 20 | 20 |
∠C/度 | 70 | 70 | 60 | 60 | 80 |
∠EAD/度 | 30 | a | 15 | 20 | 30 |
20
20
,于是得到∠EAD與∠B、∠C的數(shù)量關系為 ∠
EAD
=
1
2
(
∠
C
-
∠
B
)
∠
EAD
=
1
2
(
∠
C
-
∠
B
)
【變式應用】
(2)小明繼續(xù)研究,在圖2中,∠B=35°,∠C=75°,其他條件不變,若把“AD⊥BC于D”改為“F是線段AE上一點,F(xiàn)D⊥BC于D”,求∠DFE的度數(shù),并寫出∠DFE與∠B、∠C的數(shù)量關系:
【思維發(fā)散】
(3)小明突發(fā)奇想,交換B、C兩個字母位置,在圖3中,若把(2)中的“點F在線段AE上”改為“點F是EA延長線上一點”,其余條件不變,當∠ABC=88°,∠C=24°時,∠F度數(shù)為
32
32
°.【能力提升】
(4)在圖4中,若點F在AE的延長線上,F(xiàn)D⊥BC于D,∠B=x,∠C=y,其余條件不變,從別作出∠CAE和∠EDF的角平分線,交于點P,試用x、y表示∠P=
∠
P
=
1
4
(
3
y
-
x
)
∠
P
=
1
4
(
3
y
-
x
)
【考點】三角形內角和定理.
【答案】20;;32;
∠
EAD
=
1
2
(
∠
C
-
∠
B
)
∠
P
=
1
4
(
3
y
-
x
)
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:589引用:3難度:0.4
相似題
-
1.已知:如圖,△ABC中,∠ABC=∠C,BD是∠ABC的平分線,且∠BDE=∠BED,∠A=100°,求∠DEC的度數(shù).
發(fā)布:2025/1/24 8:0:2組卷:116引用:4難度:0.5 -
2.如圖,在△ABC中,AE是中線,AD是角平分線,AF是高,則:
(1)∠BAC=2
(2)BC=2
(3)發(fā)布:2025/1/24 8:0:2組卷:44引用:1難度:0.5 -
3.如圖,在△ABC中,∠A=m°,∠ABC和∠ACD的平分線交于點A1,得∠A1;∠A1BC和∠A1CD的平分線交于點A2,得∠A2;…∠A2012BC和∠A2012CD的平分線交于點A2013,則:
(1)∠A1=度;
(2)∠A2013=度.發(fā)布:2025/1/24 8:0:2組卷:105引用:1難度:0.5