已知函數(shù)f(x)=x2+1ax+b是定義域上的奇函數(shù),且f(-1)=-2.
(1)求函數(shù)f(x)的解析式,判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性并證明;
(2)令g(x)=f(x)-m,若函數(shù)g(x)在(0,+∞)上有兩個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍;
(3)令h(x)=x2+1x2-2tf(x)(t<0),若對(duì)?x1,x2∈[12,2]都有|h(x1)-h(x2)|≤154,求實(shí)數(shù)t的取值范圍.
f
(
x
)
=
x
2
+
1
ax
+
b
h
(
x
)
=
x
2
+
1
x
2
-
2
tf
(
x
)
(
t
<
0
)
x
2
∈
[
1
2
,
2
]
|
h
(
x
1
)
-
h
(
x
2
)
|
≤
15
4
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:189引用:4難度:0.5
相似題
-
1.把符號(hào)
稱為二階行列式,規(guī)定它的運(yùn)算法則為aamp;bcamp;d.已知函數(shù)aamp;bcamp;d=ad-bc.f(θ)=cosθamp;1-λsinθ2amp;cosθ
(1)若,θ∈R,求f(θ)的值域;λ=12
(2)函數(shù),若對(duì)?x∈[-1,1],?θ∈R,都有g(shù)(x)-1≥f(θ)恒成立,求實(shí)數(shù)λ的取值范圍.g(x)=x2amp;-11amp;1x2+1發(fā)布:2024/12/29 10:30:1組卷:13引用:5難度:0.5 -
2.對(duì)于任意x1,x2∈(2,+∞),當(dāng)x1<x2時(shí),恒有
成立,則實(shí)數(shù)a的取值范圍是alnx2x1-2(x2-x1)<0發(fā)布:2024/12/29 7:30:2組卷:61引用:3難度:0.6 -
3.設(shè)函數(shù)f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數(shù)x0,使得f(x0)<0,則a的取值范圍是.
發(fā)布:2024/12/29 5:0:1組卷:536引用:36難度:0.5
把好題分享給你的好友吧~~