已知函數(shù)f(x)=lnx和g(x)=x+ax的圖象在x=1處的切線互相垂直.
(1)求實數(shù)a的值;
(2)當x>1時,不等式mx-1f(x)<g(x)恒成立,求實數(shù)m的取值范圍;
(3)設n∈N*,證明:ln(n+1)<11×2+12×3+…+1n(n+1).
g
(
x
)
=
x
+
a
x
m
x
-
1
f
(
x
)
<
g
(
x
)
ln
(
n
+
1
)
<
1
1
×
2
+
1
2
×
3
+
…
+
1
n
(
n
+
1
)
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/10/13 11:0:2組卷:47引用:1難度:0.5
相似題
-
1.已知函數(shù)
,若關于x的不等式f(x)=ln2+x2-x+1對任意x∈(0,2)恒成立,則實數(shù)k的取值范圍( ?。?/h2>f(kex)+f(-12x)>2發(fā)布:2025/1/5 18:30:5組卷:295引用:2難度:0.4 -
2.已知函數(shù)f(x)=
.ex-ax21+x
(1)若a=0,討論f(x)的單調(diào)性.
(2)若f(x)有三個極值點x1,x2,x3.
①求a的取值范圍;
②求證:x1+x2+x3>-2.發(fā)布:2024/12/29 13:0:1組卷:183引用:2難度:0.1 -
3.已知函數(shù)f(x)=ax3+x2+bx(a,b∈R)的圖象在x=-1處的切線斜率為-1,且x=-2時,y=f(x)有極值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.發(fā)布:2024/12/29 12:30:1組卷:42引用:3難度:0.5
把好題分享給你的好友吧~~