黃金分割是一種最能引起美感的分割比例,具有嚴格的比例性、藝術(shù)性、和諧性,蘊藏著豐富的美學(xué)價值.我們知道:如圖1,如果BCAC=ACAB,那么稱點C為線段AB的黃金分割點.
(1)如圖1,請直接寫出CB與AC的比值是 5-125-12;如圖2,在Rt△ABC中,∠C=90°,BC=1,AC=2,則AB=55,在BA上截取BD=BC,則AD=5-15-1,在AC上截取AE=AD,則AEAC的值為 5-125-12;
(2)如圖3,用邊長為a的正方形紙片進行如下操作:對折正方形ABDE得折痕MN,連接EN,把邊AE折到線段EN上,即使點A的對應(yīng)點H落在EN上,得折痕EC,請證明:C是AB的黃金分割點;
(3)如圖4,在邊長為2的正方形ABCD中,M為對角線BD上一點,點N在邊CD上,且CN<DN,當N為CD的黃金分割點時,∠AMB=∠ANB,連NM,延長NM交AD于E,則DE的長為 7-357-35.
BC
AC
=
AC
AB
5
-
1
2
5
-
1
2
5
5
5
-
1
5
-
1
AE
AC
5
-
1
2
5
-
1
2
7
-
3
5
7
-
3
5
【考點】相似形綜合題.
【答案】;;;;
5
-
1
2
5
5
-
1
5
-
1
2
7
-
3
5
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/12 4:0:3組卷:1055引用:2難度:0.1
相似題
-
1.已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,E是上底AD的中點,P是腰AB上一動點,連接PE并延長,交射線CD于點M,作EF⊥PE,交下底BC于點F,連接MF交AD于點N,連接PF,AB=AD=4,BC=6,點A、P之間的距離為x,△PEF的面積為y.
(1)當點F與點C重合時,求x的值;
(2)求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(3)當∠CMF=∠PFE時,求△PEF的面積.發(fā)布:2025/1/28 8:0:2組卷:240引用:1難度:0.5 -
2.【感知】如圖①,在Rt△ABC中,∠ACB=90°,D、E分別是邊AC、BC的中點,連接DE.則△CDE與△CAB的面積比為.
【探究】將圖①的△CDE繞著點C按順時針方向旋轉(zhuǎn)一定角度,使點E落在△ABC內(nèi)部,連接AD、BE,并延長BE分別交AC、AD于點O、F,其它條件不變,如圖②.
(1)求證:△ACD∽△BCE.
(2)求證:AD⊥BF.
【應(yīng)用】將圖②的△CDE繞著點C按順時針方向旋轉(zhuǎn),使點D恰好落在邊BC的延長線上,連接AD、BE,BE的延長線交AD于點F,其它條件不變,如圖③,若AC=4,BC=3,則BF的長為.發(fā)布:2025/1/28 8:0:2組卷:300引用:1難度:0.1 -
3.【閱讀】“關(guān)聯(lián)”是解決數(shù)學(xué)問題的重要思維方式,角平分線的有關(guān)聯(lián)想就有很多……
(1)【問題提出】如圖①,PC是△PAB的角平分線,求證.PAPB=ACBC小明思路:關(guān)聯(lián)“平行線、等腰三角形”,過點B作BD∥PA,交PC的延長線于點D,利用“三角形相似”.
小紅思路:關(guān)聯(lián)“角平分線上的點到角的兩邊的距離相等”,過點C分別作CD⊥PA交PA于點D,作CE⊥PB交PB于點E,利用“等面積法”.
(2)【理解應(yīng)用】填空:如圖②,Rt△ABC中,∠B=90°,BC=3,AB=4,CD平分∠ACB交AB于點D,則BD長度為 ;
(3)【深度思考】如圖③,在Rt△ABC中,∠BAC=90°,D是邊BC上一點,連接AD,將△ACD沿AD所在直線折疊點C恰好落在邊AB上的E點處.若AC=1,AB=2,則DE的長為 ;
(4)【拓展升華】如圖④,△ABC中,AB=6,AC=4,AD為∠BAC的角平分線,AD的垂直平分線EF交BC延長線于F,連接AF,當BD=3時,AF的長為 .發(fā)布:2025/1/28 8:0:2組卷:312引用:1難度:0.1