圓內(nèi)各幾何要素之間存在一定的數(shù)量關(guān)系和位置關(guān)系,這也是國內(nèi)外數(shù)學家感興趣的研究對象,其中就有對角線互相垂直的圓內(nèi)接四邊形.我們把這類對角線互相垂直的圓內(nèi)接四邊形稱為“雅系四邊形”.
(1)若平行四邊形ABCD是“雅系四邊形”,則四邊形ABCD是 ③③(填序號);
①矩形
②菱形
③正方形
(2)如圖,四邊形ABCD內(nèi)接于圓,P為圓內(nèi)一點,∠APD=∠BPC=90°,且∠ADP=∠PBC,求證:四邊形ABCD為“雅系四邊形”;
(3)在(2)的條件下,BD=3,且AB=2DC.
①當DC=22時,求AC的長度;
②當DC的長度最小時,請直接寫出tan∠ADP的值.
AB
=
2
DC
DC
=
2
2
【考點】圓的綜合題.
【答案】③
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:661引用:2難度:0.1
相似題
-
1.如圖,AB是圓O的直徑,弦CD與AB交于點H,∠BDC=∠CBE.
(1)求證:BE是圓O的切線;
(2)若CD⊥AB,AC=2,BH=3,求劣弧BC的長;
(3)如圖,若CD∥BE,作DF∥BC,滿足BC=2DF,連接FH、BF,求證:FH=BF.發(fā)布:2025/1/28 8:0:2組卷:96引用:1難度:0.1 -
2.如圖,AB是圓O的直徑,AB=6,D是半圓ADB上的一點,C是弧BD的中點.
(1)若∠ABD=30°,求BC的長和由弦BC、BD、和弧CD圍成的圖形面積;
(2)若弧AD的度數(shù)是120度,在半徑OB上是否存在點P,使得PC+PD的值最小,如果存在,請在備用圖中畫出P的位置,并求PC+PD的最小值,如果不存在,請說明理由.發(fā)布:2025/1/28 8:0:2組卷:42引用:0難度:0.3 -
3.如圖,AB是圓O的直徑,弦CD⊥AB于G,射線DO與直線CE相交于點E,直線DB與CE交于點H,且∠BDC=∠BCH.
(1)求證:直線CE是圓O的切線.
(2)如圖1,若OG=BG,BH=1,直接寫出圓O的半徑;
(3)如圖2,在(2)的條件下,將射線DO繞D點逆時針旋轉(zhuǎn),得射線DM,DM與AB交于點M,與圓O及切線CF分別相交于點N,F(xiàn),當GM=GD時,求切線CF的長.發(fā)布:2025/1/28 8:0:2組卷:775引用:2難度:0.1
相關(guān)試卷