在①f(x)的圖像關(guān)于直線x=5π6對(duì)稱,②f(x)的圖像關(guān)于點(diǎn)(5π18,0)對(duì)稱,③f(x)在[-π4,π4]上單調(diào)遞增這三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問(wèn)題中,若問(wèn)題中的正實(shí)數(shù)a存在,求出a的值;若a不存在,說(shuō)明理由.
已知函數(shù)f(x)=4sin(ωx+π6)+a(ω∈N*)的最小正周期不小于π3,且____,是否存在正實(shí)數(shù)a,使得函數(shù)f(x)在[0,π12]上有最大值3?
x
=
5
π
6
(
5
π
18
,
0
)
[
-
π
4
,
π
4
]
f
(
x
)
=
4
sin
(
ωx
+
π
6
)
+
a
(
ω
∈
N
*
)
π
3
π
12
【考點(diǎn)】正弦函數(shù)的單調(diào)性.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:94引用:5難度:0.5
相似題
-
1.已知f(x)=sin(ωx+φ)(ω>0)滿足
,f(π4)=1且f(x)在f(53π)=0上單調(diào),則ω的最大值為( ?。?/h2>(π4,5π6)發(fā)布:2024/12/29 11:30:2組卷:973引用:9難度:0.7 -
2.我國(guó)著名數(shù)學(xué)家華羅庚先生曾說(shuō):數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難入微,數(shù)形結(jié)合百般好,隔裂分家萬(wàn)事休,在數(shù)學(xué)的學(xué)習(xí)和研究中,函數(shù)的解析式常用來(lái)研究函數(shù)圖象的特征,兩數(shù)
的圖象大致為( )f(x)=12x-sinx發(fā)布:2024/12/29 13:0:1組卷:176引用:4難度:0.9 -
3.已知函數(shù)
(ω>0)的最小正周期T=π,下列說(shuō)法正確的是( ?。?/h2>f(x)=2sin(ωx-π3)發(fā)布:2024/12/29 12:30:1組卷:619引用:3難度:0.7
把好題分享給你的好友吧~~