已知:在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),拋物線y=-39x2+b交x軸于點(diǎn)A(-3,0)和點(diǎn)B,交y軸于點(diǎn)C,連接AC,BC.
(1)如圖1,求∠ACB的度數(shù);
(2)如圖2,直線y=8327x-8327t交線段OB于點(diǎn)D,交y軸于點(diǎn)E,連接CD,設(shè)△CDE的面積為S,求S與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);
(3)如圖3,在(2)的條件下,線段CD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°,得到線段CF,連接AF,取線段AF的中點(diǎn)G,連接BF,GC,分別延長(zhǎng)BF,GC交于點(diǎn)H.點(diǎn)K在第二象限拋物線上,連接KE,當(dāng)點(diǎn)K的橫坐標(biāo)為-2時(shí),∠KEC=∠H,求S的值.
y
=
-
3
9
x
2
+
b
y
=
8
3
27
x
-
8
3
27
t
【考點(diǎn)】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:63引用:1難度:0.2
相似題
-
1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個(gè)交點(diǎn)是A(4,0),B(1,0),與y軸的交點(diǎn)是C.
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點(diǎn)D,使得△DCA的面積最大?若存在,求出點(diǎn)D的坐標(biāo)及△DCA面積的最大值;若不存在,請(qǐng)說明理由;
(3)設(shè)拋物線的頂點(diǎn)是F,對(duì)稱軸與AC的交點(diǎn)是N,P是在AC上方的該拋物線上一動(dòng)點(diǎn),過P作PM⊥x軸,交AC于M.若P點(diǎn)的橫坐標(biāo)是m.問:
①m取何值時(shí),過點(diǎn)P、M、N、F的平面圖形不是梯形?
②四邊形PMNF是否有可能是等腰梯形?若有可能,請(qǐng)求出此時(shí)m的值;若不可能,請(qǐng)說明理由.發(fā)布:2025/1/2 8:0:1組卷:82引用:1難度:0.5 -
2.如圖,我們把一個(gè)半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個(gè)“果圓”被y軸截得的弦CD的長(zhǎng)為.
發(fā)布:2024/12/23 17:30:9組卷:3638引用:37難度:0.4 -
3.如圖,將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)C在x軸上,點(diǎn)D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點(diǎn)B落在坐標(biāo)平面內(nèi),設(shè)點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點(diǎn)落在△ADE的內(nèi)部,則a的取值范圍是( ?。?/h2>5發(fā)布:2024/12/26 1:30:3組卷:2663引用:7難度:0.7