在平面直角坐標系中,某個函數(shù)圖象上任意兩點的坐標分別為(-t,y1)和(t,y2)(其中t為常數(shù)且t>0),將x<-t的部分沿直線y=y1翻折,翻折后的圖象記為G1;將x>t的部分沿直線y=y2翻折,翻折后的圖象記為G2,將G1和G2及原函數(shù)圖象剩余的部分組成新的圖象G.
例如:如圖,當t=1時,原函數(shù)y=x,圖象G所對應的函數(shù)關(guān)系式為y=-x-2(x<-1) x(-1≤x≤1) -x+2(x>1)
.
(1)當t=12時,原函數(shù)為y=2x+1,圖象G與坐標軸的交點坐標是 (32,0),(0,1),(-12,0)(32,0),(0,1),(-12,0).
(2)對應函數(shù)y=x2-2nx+n2-3(n為常數(shù)).
①n=-1時,若圖象G與直線y=3恰好有兩個交點,求t的取值范圍.
②當t=2時,若圖象G在2n-2≤x≤2n-1上的函數(shù)值y隨x的增大而增大,直接寫出n的取值范圍.
- x - 2 ( x < - 1 ) |
x ( - 1 ≤ x ≤ 1 ) |
- x + 2 ( x > 1 ) |
1
2
3
2
1
2
3
2
1
2
【考點】二次函數(shù)綜合題.
【答案】(,0),(0,1),(-,0)
3
2
1
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:202引用:1難度:0.1
相似題
-
1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個交點是A(4,0),B(1,0),與y軸的交點是C.
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點D,使得△DCA的面積最大?若存在,求出點D的坐標及△DCA面積的最大值;若不存在,請說明理由;
(3)設拋物線的頂點是F,對稱軸與AC的交點是N,P是在AC上方的該拋物線上一動點,過P作PM⊥x軸,交AC于M.若P點的橫坐標是m.問:
①m取何值時,過點P、M、N、F的平面圖形不是梯形?
②四邊形PMNF是否有可能是等腰梯形?若有可能,請求出此時m的值;若不可能,請說明理由.發(fā)布:2025/1/2 8:0:1組卷:82引用:1難度:0.5 -
2.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為.
發(fā)布:2024/12/23 17:30:9組卷:3643引用:37難度:0.4 -
3.如圖,將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C在x軸上,點D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內(nèi),設點B的對應點為點E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點落在△ADE的內(nèi)部,則a的取值范圍是( ?。?/h2>5發(fā)布:2024/12/26 1:30:3組卷:2665引用:7難度:0.7
相關(guān)試卷