當(dāng)前位置:
試題詳情
在平面直角坐標(biāo)系xOy中,橢圓C的中心為原點(diǎn),焦點(diǎn)F1,F(xiàn)2在x軸上,離心率為12.過(guò)F1的直線L交C于A,B兩點(diǎn),且△ABF2的周長(zhǎng)為16,那么C的方程為x216+y212=1x216+y212=1.
1
2
x
2
16
y
2
12
x
2
16
y
2
12
【考點(diǎn)】橢圓的標(biāo)準(zhǔn)方程.
【答案】+=1
x
2
16
y
2
12
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/23 20:38:36組卷:466引用:8難度:0.5
相似題
-
1.已知橢圓的標(biāo)準(zhǔn)方程為
,則橢圓的焦點(diǎn)坐標(biāo)為( )x210+y2=1發(fā)布:2024/11/24 8:0:2組卷:1251引用:2難度:0.9 -
2.把橢圓
繞左焦點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)90°,則所得橢圓的準(zhǔn)線方程為.x225+y29=1發(fā)布:2024/12/1 8:0:1組卷:28引用:1難度:0.5 -
3.已知方程
表示曲線C,則下列說(shuō)法正確的是( ?。?/h2>y24-2a+x2a=1發(fā)布:2024/12/19 18:30:1組卷:230引用:7難度:0.6