已知數列{an}滿足:a1=2,an+1=3an+3n+1-2n(n∈N*)
(1)設bn=an-2n3n,證明:數列{bn}為等差數列,并求數列{an}的通項公式;
(2)求數列{an}的前n項和Sn;
(3)設Cn=an+1an(n∈N*),是否存在k∈N*,使得Cn≤Ck對一切正整數n均成立,并說明理由.
a
n
-
2
n
3
n
a
n
+
1
a
n
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:83引用:7難度:0.3
相似題
-
1.定義
為n個正數p1,p2,…,pn的“均倒數”.若已知數列{an}的前n項的“均倒數”np1+p2+…+pn,又bn=13n+1,則an+26+1b1b2+…+1b2b3=( ?。?/h2>1b9b10發(fā)布:2024/12/29 11:30:2組卷:112難度:0.7 -
2.十九世紀下半葉集合論的創(chuàng)立奠定了現代數學的基礎.著名的“康托三分集”是數學理性思維的構造產物,具有典型的分形特征其操作過程如下:將閉區(qū)間[0,1]均分為三段,去掉中間的區(qū)間段(
,13),記為第一次操作;再將剩下的兩個區(qū)[0,23],[13,1]分別均分為三段,并各自去掉中間的區(qū)間段,記為第二次操作;…如此這樣,每次在上一次操作的基礎上,將剩下的各個區(qū)間分別均分為三段,同樣各自去掉中間的區(qū)間段.操作過程不斷地進行下去,以至無窮,剩下的區(qū)間集合即是“康托三分集”.若使去掉的各區(qū)間長度之和不小于23,則需要操作的次數n的最小值為( ?。▍⒖紨祿簂g2=0.3010,lg3=0.4771)910發(fā)布:2024/12/29 13:30:1組卷:141引用:17難度:0.6 -
3.設數列{an}的前n項和是Sn,令
,稱Tn為數列a1,a2,…,an的“超越數”,已知數列a1,a2,…,a504的“超越數”為2020,則數列5,a1,a2,…,a504的“超越數”為( ?。?/h2>Tn=S1+S2+?+Snn發(fā)布:2024/12/29 9:0:1組卷:126難度:0.5
把好題分享給你的好友吧~~