當(dāng)前位置:
2022-2023學(xué)年江蘇省無(wú)錫市江陰市華士實(shí)驗(yàn)中學(xué)九年級(jí)(上)月考數(shù)學(xué)試卷(10月份)>
試題詳情
配方法是數(shù)學(xué)中重要的一種思想方法.它是指將一個(gè)式子的某一部分通過(guò)恒等變形化為完全平方式或幾個(gè)完全平方式的和的方法.這種方法常被用到代數(shù)式的變形中,并結(jié)合非負(fù)數(shù)的意義來(lái)解決一些問(wèn)題.我們定義:一個(gè)整數(shù)能表示成a2+b2(a、b是整數(shù))的形式,則稱這個(gè)數(shù)為“完美數(shù)”.例如,5是“完美數(shù)”.理由:因?yàn)?=22+12,所以5是“完美數(shù)”.
解決問(wèn)題:
(1)已知29是“完美數(shù)”,請(qǐng)將它寫(xiě)成a2+b2(a、b是整數(shù))的形式 29=22+5229=22+52;
(2)若x2-6x+5可配方成(x-m)2+n(m、n為常數(shù)),則mn=-12-12;
探究問(wèn)題:
(1)已知x2+y2-2x+4y+5=0,則x+y=-1-1;
(2)已知S=x2+4y2+4x-12y+k(x、y是整數(shù),k是常數(shù)),要使S為“完美數(shù)”,試求出符合條件的一個(gè)k值,并說(shuō)明理由.
拓展結(jié)論:
已知實(shí)數(shù)x、y滿足-x2+52x+y-5=0,求x-2y的最值.
-
x
2
+
5
2
x
+
y
-
5
=
0
【考點(diǎn)】配方法的應(yīng)用;非負(fù)數(shù)的性質(zhì):偶次方.
【答案】29=22+52;-12;-1
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:715引用:12難度:0.7
相似題
-
1.已知代數(shù)式-a2+2a-1,無(wú)論a取任何值,它的值一定是( ?。?/h2>
發(fā)布:2024/12/12 8:0:1組卷:108引用:3難度:0.7 -
2.若把代數(shù)式x2+2x-2化為(x+m)2+k的形式,其中m,k為常數(shù),則m+k的值為( ?。?/h2>
發(fā)布:2024/12/16 14:30:3組卷:102引用:3難度:0.9 -
3.已知a,b,c滿足4a2+2b-4=0,b2-4c+1=0,c2-12a+17=0,則a2+b2+c2等于( ?。?/h2>
發(fā)布:2024/12/23 12:30:2組卷:357引用:9難度:0.4
把好題分享給你的好友吧~~