如圖①,我們定義:在四邊形ABCD中,若AD=BC,且∠ADB+∠BCA=180°,則把四邊形ABCD叫做互補等對邊四邊形.
(1)如圖②,在等腰三角形ABE中,EA=EB,四邊形ABCD是互補等對邊四邊形,試說明:∠ABD=∠BAC=12∠E.
(2)如圖③,在非等腰三角形ABE中,若四邊形ABCD仍是互補等對邊四邊形,試問∠ABD=∠BAC=12∠E是否仍然成立.若成立,請加以說明;若不成立,請說明理由.
1
2
1
2
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:145引用:2難度:0.4
相似題
-
1.如圖,在△ABC中,∠BAC=90°,延長BA到點D,使AD=
AB,點E、F分別為BC、AC的中點,請你在圖中找出一組相等關(guān)系,使其滿足上述所有條件,并加以證明.12發(fā)布:2025/1/24 8:0:2組卷:4引用:1難度:0.5 -
2.如圖,在△ABC中,AB=CB,∠ABC=90°,F(xiàn)為AB延長線上一點,點E在線段BC上,且AE=CF.
求證:∠AEB=∠CFB.發(fā)布:2025/1/24 8:0:2組卷:453引用:4難度:0.7 -
3.如圖,在Rt△ABC中,∠C=∠BED=90°,且CD=DE,AD=BD,則∠B=.
發(fā)布:2025/1/28 8:0:2組卷:10引用:0難度:0.7
相關(guān)試卷