意大利著名數(shù)學(xué)家斐波那契在研究兔子繁殖問(wèn)題時(shí),發(fā)現(xiàn)有這樣一列數(shù):1,1,2,3,5,…,其中從第三項(xiàng)起,每個(gè)數(shù)等于它前面兩個(gè)數(shù)的和,即an+2=an+1+an(n∈N*),后來(lái)人們把這樣的一列數(shù)組成的數(shù)列{an}稱為“斐波那契數(shù)列”.記a2022=t,則a1+a3+a5+?+a2021=( ?。?/h1>
a
n
+
2
=
a
n
+
1
+
a
n
(
n
∈
N
*
)
【考點(diǎn)】數(shù)列遞推式.
【答案】C
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:319引用:8難度:0.6
相似題
-
1.設(shè)a,b∈R,數(shù)列{an}滿足a1=a,an+1=an2+b,n∈N*,則( )
發(fā)布:2024/12/29 12:30:1組卷:3192引用:9難度:0.4 -
2.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若
,5an+1=5an+2,則S5=( ?。?/h2>a1=65發(fā)布:2024/12/29 11:0:2組卷:157引用:4難度:0.7 -
3.在數(shù)列{an}中,a1=1,an+1=2an+2n.
(1)設(shè)bn=.證明:數(shù)列{bn}是等差數(shù)列;an2n-1
(2)求數(shù)列{an}的通項(xiàng)公式.發(fā)布:2024/12/29 6:30:1組卷:136引用:11難度:0.3
把好題分享給你的好友吧~~