古希臘亞歷山大時(shí)期最后一位重要的幾何學(xué)家帕普斯(Pappus,公元3世紀(jì)末)在其代表作《數(shù)學(xué)匯編》中研究了“三線軌跡”問題:即到兩條已知直線距離的乘積與到第三條直線距離的平方之比等于常數(shù)的動(dòng)點(diǎn)軌跡為圓錐曲線,今有平面內(nèi)三條給定的直線l1,l2,l3,且l2,l3均與l1垂直.若動(dòng)點(diǎn)M到l2,l3的距離的乘積與到l1的距離的平方相等,則動(dòng)點(diǎn)M在直線l2,l3之間的軌跡是( )
【答案】A
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:113引用:6難度:0.6
相似題
-
1.點(diǎn)P為△ABC所在平面內(nèi)的動(dòng)點(diǎn),滿足
=t(AP),t∈(0,+∞),則點(diǎn)P的軌跡通過△ABC的( ?。?/h2>AB|AB|cosB+AC|AC|cosC發(fā)布:2024/12/29 6:30:1組卷:100引用:3難度:0.7 -
2.已知四棱錐P-ABCD的底面ABCD為正方形,PD⊥底面ABCD,且PD=AD=4,點(diǎn)E為BC的中點(diǎn).四棱錐P-ABCD的所有頂點(diǎn)都在同一個(gè)球面上,點(diǎn)M是該球面上的一動(dòng)點(diǎn),且PM⊥AE,則點(diǎn)M的軌跡的長度為( ?。?/h2>
發(fā)布:2024/12/29 8:0:12組卷:14引用:1難度:0.6 -
3.已知兩個(gè)定點(diǎn)A(-2,0),B(1,0),如果動(dòng)點(diǎn)P滿足|PA|=2|PB|.
(1)求點(diǎn)P的軌跡方程并說明該軌跡是什么圖形;
(2)若直線l:y=kx+1分別與點(diǎn)P的軌跡和圓(x+2)2+(y-4)2=4都有公共點(diǎn),求實(shí)數(shù)k的取值范圍.發(fā)布:2024/12/29 10:30:1組卷:39引用:3難度:0.5
把好題分享給你的好友吧~~