試卷征集
加入會員
操作視頻

已知矩形ABCD中,
AB
=
3
,BC=1,現(xiàn)將△ACD沿對角線AC向上翻折,得到四面體D'-ABC.

(1)求三棱錐D'-ABC外接球的表面積;
(2)若點O為底面ABC內部一點,且
OA
+
2
OB
+
3
OC
=
0
,求三棱錐D'-BOC與三棱錐D'-ABC的體積之比;
(3)若BD'的取值范圍是
[
7
2
,
10
2
]
,求二面角D'-AC-B的取值范圍.

【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:54引用:1難度:0.5
相似題
  • 1.如圖,AB是圓O的直徑,點C是圓O上異于A,B的點,直線PC⊥平面ABC,E,F(xiàn)分別是PA,PC的中點.
    (Ⅰ)記平面BEF與平面ABC的交線為l,試判斷直線l與平面PAC的位置關系,并加以證明;
    (Ⅱ)設(Ⅰ)中的直線l與圓O的另一個交點為D,且點Q滿足
    DQ
    =
    1
    2
    CP
    .記直線PQ與平面ABC所成的角為θ,異面直線PQ與EF所成的角為α,二面角E-l-C的大小為β.求證:sinθ=sinαsinβ.

    發(fā)布:2025/1/20 8:0:1組卷:878引用:12難度:0.1
  • 2.如圖,四邊形ABCD為梯形,四邊形CDEF為矩形,平面ABCD⊥平面CDEF,∠BAD=∠ADC=90°,AB=AD=DE=
    1
    2
    CD,M為AE的中點.
    (1)證明:AC∥平面MDF;
    (2)求平面MDF與平面BCF的夾角的大?。?/h2>

    發(fā)布:2025/1/2 8:0:1組卷:141引用:1難度:0.6
  • 3.如圖,AB是圓O的直徑,PA垂直于圓所在的平面,C是圓周上的點.
    (1)求證:平面PAC⊥平面PBC;
    (2)若AB=2
    2
    ,AC=2,PA=2,求二面角C-PB-A的度數(shù).

    發(fā)布:2025/1/28 8:0:2組卷:32引用:1難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內改正