在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,平面內(nèi)點(diǎn)O滿足(OA+OB)?AB=(OB+OC)?BC=(OC+OA)?CA=0,且b2-2b+c2=0
(1)證明:點(diǎn)O為△ABC的外心;
(2)求BC?AO的取值范圍.
OA
OB
AB
OB
OC
BC
OC
OA
CA
BC
?
AO
【考點(diǎn)】平面向量數(shù)量積的性質(zhì)及其運(yùn)算.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:87引用:4難度:0.5
相似題
-
1.如圖,△ABC中,D,E分別為邊BC,AC的中點(diǎn),且
與AD夾角120°,|BE|=1,|AD|=2,則BE=AB?AC發(fā)布:2025/1/24 8:0:2組卷:61引用:1難度:0.5 -
2.若向量
=(1,2),AB=(3,-4),則CB?AB=( ?。?/h2>ACA.-8 B.10 C.8 D.-10 發(fā)布:2025/1/5 18:30:5組卷:190引用:3難度:0.8 -
3.如圖,在菱形ABCD中,
,BE=12BC,若菱形的邊長(zhǎng)為6,則CF=2FD的取值范圍為 .AE?EF發(fā)布:2025/1/28 8:0:2組卷:43引用:1難度:0.9