在平面直角坐標系xOy中,對于兩個點P,Q和圖形W,如果在圖形W上存在點M,N(M,N可以重合)使得PM=QN,那么稱點P與點Q是圖形W的一對平衡點.
(1)如圖1,已知點A(0,3),B(2,3);
①設(shè)點O與線段AB上一點的距離為d,則d的最小值是 33,最大值是 1313;
②在P1(32,0),P2(1,4),P3(-3,0)這三個點中,與點O是線段AB的一對平衡點的是 P1P1;
(2)如圖2,已知⊙O的半徑為1,點D的坐標為(5,0).若點E(x,2)在第一象限,且點D與點E是⊙O的一對平衡點,求x的取值范圍;
(3)如圖3,已知點H(-3,0),以點O為圓心,OH長為半徑畫弧交x的正半軸于點K.點C(a,b)(其中b≥0)是坐標平面內(nèi)一個動點,且OC=5,⊙C是以點C為圓心,半徑為2的圓,若?HK上的任意兩個點都是⊙C的一對平衡點,直接寫出b的取值范圍.
13
13
3
2
?
HK
【考點】圓的綜合題.
【答案】3;;P1
13
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:771引用:5難度:0.3
相似題
-
1.如圖,AB是圓O的直徑,弦CD與AB交于點H,∠BDC=∠CBE.
(1)求證:BE是圓O的切線;
(2)若CD⊥AB,AC=2,BH=3,求劣弧BC的長;
(3)如圖,若CD∥BE,作DF∥BC,滿足BC=2DF,連接FH、BF,求證:FH=BF.發(fā)布:2025/1/28 8:0:2組卷:96引用:1難度:0.1 -
2.如圖,AB是圓O的直徑,弦CD⊥AB于G,射線DO與直線CE相交于點E,直線DB與CE交于點H,且∠BDC=∠BCH.
(1)求證:直線CE是圓O的切線.
(2)如圖1,若OG=BG,BH=1,直接寫出圓O的半徑;
(3)如圖2,在(2)的條件下,將射線DO繞D點逆時針旋轉(zhuǎn),得射線DM,DM與AB交于點M,與圓O及切線CF分別相交于點N,F(xiàn),當GM=GD時,求切線CF的長.發(fā)布:2025/1/28 8:0:2組卷:775引用:2難度:0.1 -
3.如圖,AB是圓O的直徑,AB=6,D是半圓ADB上的一點,C是弧BD的中點.
(1)若∠ABD=30°,求BC的長和由弦BC、BD、和弧CD圍成的圖形面積;
(2)若弧AD的度數(shù)是120度,在半徑OB上是否存在點P,使得PC+PD的值最小,如果存在,請在備用圖中畫出P的位置,并求PC+PD的最小值,如果不存在,請說明理由.發(fā)布:2025/1/28 8:0:2組卷:42引用:0難度:0.3